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Preface

To understand the evolution of things, one must un-

derstand something about their history as well as the

environmental forces thathad shaping in�uencesupon

them. Information Foraging Theory evolved through

a series of fortuitous historical accidents, as well as a

number of enduring shaping forces. A critical event

was my move to the Palo Alto Research Center

(PARC). Soon after I came to PARC at the beginning

of 1992, I became involved in trying to develop studies

and models around a set of projects that were collec-

tively called intelligent information access. This in-

cluded the novel information visualization systems

investigated in the User Interface Research Area (see,

e.g., Card et al., 1999) as well as the new techniques

for browsing and searching being created in the

Quantitative Content Area (e.g., Rao et al., 1995). As

part of this effort, a group of us (including Stu Card,

Dan Russell, Mark Ste�k, and John van Gigch from

California State University�Sacramento) were run-

ning some quick-and-dirty studies of people such as

business intelligence analysts and MBA students. Our

studies of people doing information-intensive work

started to give me some sense of the range of phe-

nomena that we would need to address. Our study

participants clearly were faced with massive volumes

of information, often under deadline conditions, and

making complex search decisions based on assess-

ments that were enveloped in a great deal of un-

certainty.

These information-intensive tasks seemed to be

different than the human-computer interaction tasks

that were being addressed by cognitive engineering

models in the early 1990s, or the science, math, and

programming tasks addressed by intelligent tutoring

systems of that same period. Such cognitive models

addressed tasks that tended to occur in task environ-

ments that (although large and complex) were well

de�ned by a circumscribed domain of possible goals,

elements of domain knowledge (e.g., about Lisp pro-

gramming, algebra, word processing), and potential

actions (e.g., in a formal language, or in a user inter-

face). In contrast, the behavior of people seeking



information appeared to be largely shaped by the

structure or architecture of the content�the in-

formation environment�and only minimally shaped

by the user�s knowledge of user interface. In addition,

the structure of the information environment was

fundamentally probabilistic. Consequently, behavior

was also dominated by choices made in the face of

uncertainty and the continual evaluation of the ex-

pected costs and bene�ts of various actions in the in-

formation environment, in contrast to the near-certain

costs and bene�ts of actions taken in traditional cog-

nitive modeling domains of the time.

It was clear that it was going to be a challenge to

develop theories for information-intensive tasks. Mul-

ling about this issue, I was drawn to work in two areas in

which I had done some reading. The �rst was the work

in the late 1980s of John R. Anderson (e.g., Anderson,

1990), who was putting forth the argument that to un-

derstand mechanisms of the mind, one must �rst try to

�gure out the environmental problems that it solves.

John developed the method of rational analysis and

applied this approach to memory, categorization, and

other areas of cognition with considerable success. I

wondered if the approach could be applied to the

analysis of the information environment and how it

shapes information seeking behavior.1 The second area

of interest was behavioral ecology (e.g., Smith, 1987),

which suggested that very diverse strategies adopted by

people could be systematically predicted from optimi-

zation analysis that focused �rst on scrutiny of the en-

vironment. This particular interest of mine originated

as an undergraduate at Trent University, where phy-

siological psychology included coverage of ethology

(the precursor to behavioral ecology) and anthropology

included what is known as cultural materialism (the

precursor to current evolutionary-ecological approaches

to anthropology). Working through the literature in

these areas, I was led to optimal foraging theory, and

particularly to the book by Stephens and Krebs (1986)

that is the source of the conventional models discussed

in chapter 2. I quite literally had an ��ah-ha�� experience

in the middle of a late-night conversation with Jacqui

LeBlanc in which I laid out the basic analogies between

information foraging and optimal foraging theory.

In July 1992, I wrote a working paper titled ��Notes

on Adaptive Sense Making in Information Ecolo-

gies,�� which discussed the possible application of

conventional foraging models and the core mathe-

matics of Stephens and Krebs to idealized informa-

tion foraging tasks. The working paper got two kinds

of reactions. The �rst was one of disbelief in the

analogy, for a variety of relatively good reasons (e.g.,

humans are not rational, information is not food).

The second was that the ideas were ��audacious�� (to

quote Jock Mackinlay). Fortunately, Stu Card (my

manager and colleague in the User Interface Re-

search Area) pushed me to pursue this approach, and

he has been my main sounding board for the devel-

opment of the theory over the years. By the fall of

1993, I had enough material to present a seminar at

the University of California�Berkeley called ��Sense

Making in Complex Information Ecologies.��

In the decade that followed, the fruitfulness of In-

formation Foraging Theory was apparent from the way

that it could be used to bring messy data into crystal

clear focus. The �rst time this happened was in ap-

plication to the Scatter/Gather study presented in

chapter 6. Simple analyses of the logs of users inter-

acting with the system seemed to indicate that users

where behaving in a nonsystematic way in their allo-

cation of time or in their choices of interface actions.

The application of optimal foraging models resulted

in another of those ��ah-ha�� experiences in which

suddenly the data plots all fell neatly on lines pre-

dicted by theory. Like catching a perfect wave in

sur�ng, the feeling one gets from that moment when

one gains power over a small portion of the universe is

hard to recount without the skill of poetry (which I do

not have), and it is the reward that keeps you coming

back.
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1

Information Foraging Theory

Framework and Method

Knowledge is power.
�Sir Francis Bacon,

Meditationes Sacræ.
De Hæresibus (1597)

Modern mankind forages in a world awash in infor-

mation, of our own creation, that can be transformed

into knowledge that shapes and powers our engage-

ment with nature. This information environment has

coevolved with the epistemic drives and strategies

that are the essence of our adaptive toolkit. The result

of this coevolution is a staggering volume of content

that can be transmitted at the speed of light. This

wealth of information provides resources for adapting

to the problems posed by our increasingly complex

world. However, this information environment poses

its own complex problems that require adaptive

strategies for information foraging. This book is about

Information Foraging Theory, which aims to explain

and predict how people will best shape themselves for

their information environments and how information

environments can best be shaped for people.

Information Foraging Theory is driven by three

maxims attributable in spirit, if not direct quotation,

to Allen Newell�s (1990) program of Uni�ed Theories

of Cognition:1

1. Good science responds to real phenomena or real
problems. Human psychology has evolved as an
adaptation to the real world. Information forag-
ing theory is concerned with understanding rep-
resentative problems posed by the real-world
information environment and adaptive cogni-
tive solutions to those problems.

2. Good science makes a difference. Information
Foraging Theory is intended to provide the
basis for application to the design and evalu-
ation of new technologies for human interac-
tion with information, such as better ways to
forage for information on the World Wide
Web.

3. Good science is in the details. The aim is to
produce working formal models for the anal-
ysis and prediction of observable behavior.

Like much of Newell�s work, the super�cial ele-

gance and simplicity of these maxims unfurls into

complex sets of entailments. In this book I argue

that the best approach to studying real information

3



foraging problems is to adopt methodological adap-

tationism, which directs our scienti�c attention to the

ultimate forces driving adaptation and to the proxi-

mate psychological mechanisms that are marshaled

to produce adaptive solutions. Thus, the methodol-

ogy of Information Foraging Theory is more akin to

the methodology of biology than that of physics, in

contrast with the historical bulk of experimental psy-

chology. To some extent, this choice of methodology

is a consequence of the success with which Informa-

tion Foraging Theory has been able to draw upon

metaphors, models, and techniques from optimal

foraging theory in biology (Stephens & Krebs, 1986).

The concern with application (Newell & Card, 1985)

drives the theory to be relevant to technological de-

sign and evaluation, which requires that models be

truly predictive a priori (even if approximately so)

rather than a ��good �t�� explanation of the data a pos-

teriori, as is the case with many current psychological

models. Being concerned with the details drives the

theory to marshal a variety of concepts, tools, and

techniques that allow us to build quantitative, pre-

dictive models that span many levels of interrelated

phenomena and interrelated levels of explanation.

This includes the techniques of task analysis through

state-space and problem-space representations, ratio-

nal analysis and optimization analysis of adaptive

solutions, and production system models of the cog-

nitive systems that implement those adaptive sol-

utions.

Audience

The intent of this book is to provide a comprehensive

presentation of Information Foraging Theory, the

details of empirical investigations of its predictions,

and applications of the theory to the engineering and

design of user interfaces. This book aims primarily at

an interdisciplinary audience with backgrounds and

interests in the basic and applied science aspects of

cognitive science, computer science, and the infor-

mation and library sciences. The theory and method-

ology have been developed by drawing upon work

on the rational analysis of cognition, computational

cognitive modeling, behavioral ecology, and micro-

economics. The crucible of empirical research that

has shaped Information Foraging Theory has been

application problems in human-information inter-

action, which is emerging as a new branch in the

�eld traditionally known as human-computer inter-

action. Although the emphasis of this book is on the-

ory and research, the insights and results are intended

to be relevant to the practitioner interested in a deeper

understanding of information-seeking behavior and

guidance on new designs. Chapter 9 is devoted en-

tirely to practical applications of the theory.

By its nature, Information Foraging Theory in-

volves the use of technical material such as mathe-

matical models and computational models that may

not be familiar to a broad audience. Generally, the

technical aspects of the theory and models are pre-

sented along with succinct discussion of the key

concepts, insights, and principles that emerge from

the technical parts, along with illustrative examples,

metaphors, and graphical methods for understanding

the key points. The aim of this presentation is to pro-

vide intuitive understanding along with technical pre-

cision and insight.

Frameworks, Theories, and Models

Like other programs of research in the behavioral and

cognitive sciences, Information Foraging Theory can

be discussed in terms of the underlying framework,

the theory itself, and the models that specify predic-

tions in speci�c situations. Frameworks are the gen-

eral pools of concepts, assumptions, claims, heuris-

tics, and so forth, that are drawn from to develop

theories, as well the methods for using them to un-

derstand and predict the world. Often, frameworks

will overlap. For instance, information processing

psychology is a broad framework that assumes that

theories about human behavior can be constructed

out of information processing concepts, such as pro-

cesses that transduce physical sensations into sensory

information, elements storing various kinds of infor-

mation, and computational processes operating over

those elements. A related framework, connectionism,

shares these assumptions but makes additional ones

about the nature of information processing being

neuronlike. Although bold claims may be made by

frameworks, these are typically not testable in and of

themselves. For instance, whether the mind is mostly

a general purpose learning machine or mostly a col-

lection of exquisitely evolved computational modules

are not testable claims in and of themselves.

Theories can be constructed within frameworks

by providing additional assumptions that allow one to

4 INFORMATION FORAGING THEORY



make predictions that can be falsi�ed. Typically, this is

achieved by specifying a model for a speci�c situation

or class of situations that makes precise predictions

that can be �t to observation and measurement. For

instance, a model of information seeking on the Web

(SNIF-ACT) is presented in chapter 5 that predicts

the observed choice of Web links in given tasks. It

includes theoretical speci�cations of the information

processing model of the user, as well as assumptions

about the conditions under which it applies (e.g.,

English-speaking adults seeking information about un-

familiar topics). The bulk of this book is about Infor-

mation Foraging Theory and speci�c models. The

aim of this introductory chapter is to provide an out-

line of the underlying framework and methodology

in which Information Foraging Theory is embedded.

However, before presenting such abstractions, a simple

example is offered in order to illustrate the basic ele-

ments and approach of Information Foraging Theory.

Illustration

The basic approach of Information Foraging Theory

can be illustrated with a simple example that I hope

is familiar to many, involving the task of �nding a

good, reasonably priced hotel using the World Wide

Web (Pemberton, 2003). A typical hotel Web site

(see �gure 1.1) will allow a user to search for avail-

able hotels in some speci�ed location (e.g., ��Paris��)

and then allows the user to sort the results by the

hotel star rating (an indicator of quality) or by price

(but not both). The user must then click-select each

result to read it, because often the price, location, and

features summaries are inaccurate. Lamenting the

often poor quality of such hotel Web sites, Pem-

berton (2003) suggested that improved ��usability is

about optimizing the time you take to achieve your

purpose, how well you achieve it, and the satisfaction

in doing it. . . . How fast can you �nd the perfect

hotel?�� This notion of usability is at the core of In-

formation Foraging Theory.

For illustration, consider the somewhat simpli�ed

and idealized task of �nding a low-priced, two-star

hotel in Paris.2 This example shows (in much sim-

pli�ed form) the key steps to developing a model of

information foraging: (a) a rational analysis of the task

and information environment that draws on optimal

foraging theory from biology and (b) a production

system model of the cognitive structure of task.

Rational Analysis of the Task
and Information Environment

Figure 1.2 presents an analysis of results of search for

two-star Paris hotels that I conducted on a popular

hotel Web site. The Paris hotel descriptions and

prices were returned as a vertical list presented over

several Web pages. I sorted the list by star rating and

went to the page that began to list two-star hotels. In

�gure 1.2, the x-axis indicates the order of two-star

hotel listings in the search result list when sorted

by star rating, beginning at the �rst two-star hotel

through the last two-star hotel, and the y-axis indi-

cates price. Prices �uctuate as one proceeds down the

list of Paris hotels. As noted above, this particular

hotel Web site, like many others, does not allow the

user to sort by both quality (star rating) and price�

one must choose one or the other sorting. Assume a

rational (and perhaps somewhat boring) hotel shop-

per who was concerned only with being frugal and

sleeping in a two-star hotel. If that shopper method-

ically scanned the two-star hotel listings, keeping

track of only the lowest priced hotel found so far, the

lowest price encountered would decrease as plotted

in �gure 1.3. That is, the shopper would at �rst �nd a

relatively rapid decrease in lowest price, followed by

fewer improvements as the scan progressed. Figure

1.4 shows the savings attained (compared with the

very �rst hotel price found on the list) by continuing

to scan down the list. Figure 1.4 is a typical dimin-

ishing returns curve in which additional bene�ts

(returns) diminish as one invests more resources (in

this case, scan time).

A diminishing returns curve such as �gure 1.4

implies that the expected value of continuing to scan

diminishes with each additional listing scanned. If

the list of search results were very long�as is often

the case with the results produced by Web search

engines�there is usually a point at which the infor-

mation forager faces the decision of whether it is

worth the effort of continuing to search for a better

result than anything encountered so far. In the par-

ticular example plotted in �gure 1.2, there were no

additional savings for the last 18 items scanned.

Figure 1.3 includes a plot of the expected minimum

price encountered as a function of scanning a search

result list, and �gure 1.4 includes a plot of the ex-

pected savings as a function of scanning. These ex-

pectations were computed assuming that observed

hotel prices in �gure 1.2 come from a standard

FRAMEWORK AND METHOD 5



distribution of commodity prices (see the appendix

for details). Assuming that our hypothetical rational

hotel shopper valued time (time is money), the ques-

tionwouldbewhether the savingsexpected tobegained

by additional scanning of hotel results was worth the

time expected to be expended.

In contrast to this simple illustration, typical in-

formation problems solved on the Web are more

complicated (Morrison, Pirolli, & Card, 2001), and

the assessments of the utility of encountered items in

information foraging depend on more subtle cues than

just prices. However, the basic problem of judging

whether continued foraging will be useful or a waste

of valuable time is surely familiar to Web users. It

turns out that this problem is very similar to one class

of problems dealt with in optimal foraging theory.

�gure 1.1 A typical Web page from a hotel search site.

6 INFORMATION FORAGING THEORY



An Optimal Foraging Analogy

Many animals forage in patchy environments, with

food arranged into clumps. For instance, a bird that

feeds on berries in bushes will spend part of its time

searching for the next bush and part of its time berry

picking after having found a bush. Often, as an ani-

mal forages in a patch, it becomes harder to �nd food

items. In other words, foraging within a food patch

often exhibits a diminishing returns curve similar to

the one in �gure 1.5. Such diminishing returns may

occur, for instance, because prey actively avoid the

forager as they become aware of the threat of preda-

tion. Diminishing returns may also occur because the

forager has a strategy of picking off the more highly

pro�table items �rst (e.g., bigger berries for the hy-

pothetical bird) from a patch with �nite resources.

Like the hypothetical Web shopper discussed above,

the problem for a food forager facing diminishing

returns in a patch is whether to continue investing

efforts in getting more out of the patch, or to go look

for another patch.

Figure 1.5 is a graphical version of a simple con-

ventional patch model (Stephens & Krebs, 1986) based

on Charnov�s Marginal Value Theorem (Charnov,
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1976). The model depicted in �gure 1.5 assumes that

an animal foraging for food encounters only one kind

of food patch at random that is never reencountered.

When searching for the next food patch, it takes

an average of tB amount of time to �nd the next

patch (between-patch time). Once a patch is en-

countered, foraging within the patch returns some

amount of energy (e.g., as measured by calories) that

increases as a function, g, of the time, tW, spent for-

aging within the patch. Figure 1.5 shows a diminish-

ing returns function, g, for within-patch foraging. The

problem for the forager is how much time, tW, to

spend within each patch before leaving to �nd the

next patch.

The conventional patch model assumes that the

animal forager optimizes the overall rate of gain, R,

that characterizes the amount of energy gained per

unit time of foraging:

R … g(tW)

tB þ tW
, (1:1)

or the amount of energy (calories) gained from an

average patch divided by the time spent traveling

from one patch to the next (tB) plus the time spent

foraging within a patch (tW). The optimal amount of

time, t*, to spend in a patch is the one that yields the

maximum rate of gain, R*,

R* … g(t*)

tB þ t*
: (1:2)

Charnov�s Marginal Value Theorem (Charnov,

1976) is a mathematical solution to this problem of

determining t*. It basically says that a forager should

leave a patch when the rate of gain within the patch

[as measured by the slope of g(tW) or more speci�-

cally the derivative g0(tW)] drops below the rate of

gain that could be achieved by traveling to, and for-

aging in, a new patch. That is, the optimal forager

obeys the rule,

if g0(tW) � R*, then continue foraging in the
patch; otherwise,
when g0(tW) < R*, then start looking for a new
patch.

Charnov�s Marginal Value Theorem can be illus-

trated graphically in �gure 1.5 for this simple prob-

lem (one kind of patch, randomly distributed in the

world). First, note that the gain function g begins to

climb only after tB, which captures the fact that it

takes tB time to go from the last patch to a new patch.

If we draw a line beginning at the origin to any point

on the gain function, g, then the slope of that line

will be the overall rate of gain R, as speci�ed in

equation 1.1. Figure 1.5 shows such a line drawn

from the origin to a point just tangent to the function

g. The slope of this line is the optimal rate of gain R*

as computed in equation 1.2. This can be veri�ed

graphically by imagining other lines drawn from the

origin to points on the function g. None of those lines

will have a steeper slope than the line plotted in

�gure 1.5. The point at which the line is tangent to g

will be the point at which the rate of gain, g0(tW)

within the patch is equal to R*. This point also de-

termines t*, the optimum time to spend within the

average patch.

Production System Models

The rational analyses in Information Foraging The-

ory, which often draw from optimal foraging theory,

are used to inform the development of production

system models. These rational analyses make mini-

mal assumptions about the capabilities of foragers.

Herbert Simon (1955) argued that organisms are not

optimal, rational agents having perfect information

and unlimited computational resources. Rather, or-

ganisms exhibit bounded rationality. That is, agents

are rational and adaptive, within the constraints of

the environment and the psychological machinery

g(tW)

t*

Gain
(energy)

Time

R*

tB tW

g(tW)

t*

Gain
(energy)

Time

R*

tB tW

�gure 1.5 Charnov�s Marginal Value Theorem
states that the rate-maximizing time to spend in
patch, t* occurs when the slope of the within-patch
gain function g is equal to the average rate of gain,
which is the slope of the tangent line R*.
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available to them biologically. Production system

models provide a way of specifying the mechanistic

structures and processes that implement bounded

rationality. On the one hand, production systems have

been used in psychology as a particular kind of com-

puter simulation formalism for specifying the infor-

mation processing that theorists believe people are

performing. On the other hand, production systems

have evolved into something more than just a class of

computer simulation languages: They have become

theories about the basic information processing ar-

chitecture of cognition that is implemented in human

brains (Anderson, 1983; Anderson & Lebiere, 1998;

Newell, 1990).

In general, as used in psychology,3 production

systems are composed of a set of production rules that

specify the dynamics of information processing per-

formed by cognition (how we think). Production rules

operate over memories (or databases) that contain sym-

bolic structures that represent aspects of the external

environment and internal thought (what we think

about). The system operates in a cyclical fashion in

which production rules are selected based on the

contents of the data memories and then executed.

The execution of a production rule typically results

in some change to the memories.

The production system models presented in this

book are extensions of ACT theory (Anderson et al.,

2004; Anderson & Lebiere, 1998). ACT (Adaptive

Control of Thought) theory assumes that there are

two kinds of knowledge, declarative and procedural

(Ryle, 1949). Declarative knowledge is the kind of

knowledge that a person can attend to, re�ect upon,

and usually articulate in some way (e.g., by declaring

it verbally or by gesture). Declarative knowledge in-

cludes the kinds of factual knowledge that users can

verbalize, such as ��The �open� item on the ��le� menu

will open a �le.�� Procedural knowledge is the know-

how we display in our behavior, without conscious

awareness. For instance, knowledge of how to ride a

bike and knowledge of how to point a mouse to a

menu item are examples of procedural knowl-

edge. Procedural knowledge speci�es how declarative

knowledge is transformed into active behavior.

ACT-R (the most recent of the ACT theories) has

a memory for each kind of knowledge (i.e., a de-

clarative memory and a procedural memory) plus a

special goal memory. At any point in time, there may

be a number of goals in goal memory, but the system

behavior is focused to achieve just one goal at a time.

Complex arrangements of goals and subgoals (e.g.,

for developing and executing plans to �nd and use

information) can be implemented by manipulating

goals in goal memory.

Production rules (or productions) are used to

represent procedural knowledge in ACT-R. That is,

they specify how to apply cognitive skill (know-how)

and how to retrieve and use declarative knowledge.

Table 1.1 presents an example of a production sys-

tem for the task of �nding a low-cost hotel using a

Web site. The example in table 1.1 is not intended

to be a psychologically plausible model, but rather it

illustrates key aspects of production system mod-

els and how they are used in this book. The pro-

ductions in table 1.1 are English glosses of produc-

tions written in ACT-R 5.0, which is discussed in

greater detail below.4 Each production rule is of the

form

IF hconditioni, THEN hactionsi.

The condition of a rule speci�es a pattern. When

the contents of declarative working memory match the

pattern, the rule may be selected for application. The

actions of the rule specify additions and deletions of

content in declarative working memory, as well as

motor commands. These actions are executed if the

rule is selected to apply. In ACT-R, each production

rule has conditions that specify which goal informa-

tion must be matched and which declarative memory

must be retrieved. Each production rule has actions

that specify behavioral actions and possibly the set-

ting of subgoals. Typically, ACT-R goal memory is

operated on as what is known in computer science as

a push-down stack: a kind of memory in which the

last item stored will be the �rst item retrieved. Hence,

storing a new goal is referred to as ��pushing a goal on

the stack,�� and retrieval is referred to as ��popping a

goal from the stack.��

The production rules in table 1.1 assume that

declarative memory contains knowledge encoded

from the external world about the location and con-

tent of links on a Web page. The productions also

assume that an initial goal is set to �nd a hotel price,

and the productions accomplish the task by ��scan-

ning�� through the links keeping track of the lowest

price found so far. This involves setting a subgoal to

judge the minimum of the current best price and the

price just attended when each link is scanned. Table

1.2 presents a trace of the productions in table 1.1
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operating to scan the list of hotel prices depicted in

�gure 1.1 and graphed in �gure 1.2.

Production ��P1: Start�� in table 1.1 applies at cycle 0

in table 1.2 when the goal is to �nd a hotel price. Pro-

duction ��P2: First-link�� applies at cycle 1 to scan the

�rst link location and set the initial minimum hotel

price. Then, production ��P3: Next-link�� applies re-

peatedly to scan subsequent links (cycles 2�53). For

each link scanned, P3 sets a subgoal�by creating a new

goal and making it the focus in goal memory�to

compare the currently scanned price to the current

minimum price. This subgoal evokes either production

��P4: Minimum-price-stays-the-same�� or ��P5: New-

minimum-price.�� When either P4 or P5 applies, it pops

the subgoal to determine the minimum, and control

passes back to the top-level goal of �nding a hotel price.

Note in table 1.2 that the trace ends at cycle 52

with the execution of production ��P6: Done�� after

table 1.1 A production system for the task of �nding a low hotel price.

P1: Start
IF the goal is to �nd a hotel

& there is a page of Web results
& no link location has been processed

THEN modify the goal to specify that the �rst location is to be processed

P2: First-link
IF the goal is to �nd a hotel

& a link location is speci�ed
& no best price has been noted yet
& the link at the location indicates a price
& the link is followed by a link at a new location

THEN note that the best price is the price from the link at that location
& modify the goal to specify the new location of the next link

P3: Next-link
IF the goal is to �nd a hotel

& a link location is speci�ed
& there is a current best price
& the link at the location indicates a new price
& the link is followed by a link at a new location

THEN create a subgoal to �nd the minimum of the current price and the new price
& push the subgoal on the goal stack
& modify the current goal to specify the new location of the next link
& note the resulting new minimum price as the best price

P4: Minimum-price-stays-the-same
IF the goal is to �nd the minimum of the current price and the new price

& there is a current best price
& there is a new price
& the current best price is less than or equal to the new price

THEN note that the current best price is the minimum
& pop the subgoal

P5: New-minimum-price
IF the goal is to �nd the minimum of the current price and the new price

& there is a current best price
& there is a new price
& the current best price is greater than the new price

THEN note that the new price is the minimum
& pop the subgoal

P6: Go-do-something-else (Done)
IF the goal is to �nd a hotel

& there is a current best price
THEN stop
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table 1.2 Trace of the production system speci�ed in table 1.1.

Cycle 0: Start
Cycle 1: �rst-link Location: 1 Link-Price: 110 Current-Best: 110
Cycle 2: next-link Location: 2 Link-Price: 86 Current-Best: 110

Cycle 3: new-minimum-price
Cycle 4: next-link Location: 3 Link-Price: 76 Current-Best: 86

Cycle 5: new-minimum-price
Cycle 6: next-link Location: 4 Link-Price: 80 Current-Best: 76

Cycle 7: minimum-price-stays-same
Cycle 8: next-link Location: 5 Link-Price: 86 Current-Best: 76

Cycle 9: minimum-price-stays-same
Cycle 10: next-link Location: 6 Link-Price: 76 Current-Best: 76

Cycle 11: minimum-price-stays-same
Cycle 12: next-link Location: 7 Link-Price: 96 Current-Best: 76

Cycle 13: minimum-price-stays-same
Cycle 14: next-link Location: 8 Link-Price: 110 Current-Best: 76

Cycle 15: minimum-price-stays-same
Cycle 16: next-link Location: 9 Link-Price: 86 Current-Best: 76

Cycle 17: minimum-price-stays-same
Cycle 18: next-link Location: 10 Link-Price: 96 Current-Best: 76

Cycle 19: minimum-price-stays-same
Cycle 20: next-link Location: 11 Link-Price: 110 Current-Best: 76

Cycle 21: minimum-price-stays-same
Cycle 22: next-link Location: 12 Link-Price: 86 Current-Best: 76

Cycle 23: minimum-price-stays-same
Cycle 24: next-link Location: 13 Link-Price: 86 Current-Best: 76

Cycle 25: minimum-price-stays-same
Cycle 26: next-link Location: 14 Link-Price: 76 Current-Best: 76

Cycle 27: minimum-price-stays-same
Cycle 28: next-link Location: 15 Link-Price: 90 Current-Best: 76

Cycle 29: minimum-price-stays-same
Cycle 30: next-link Location: 16 Link-Price: 76 Current-Best: 76

Cycle 31: minimum-price-stays-same
Cycle 32: next-link Location: 17 Link-Price: 130 Current-Best: 76

Cycle 33: minimum-price-stays-same
Cycle 34: next-link Location: 18 Link-Price: 86 Current-Best: 76

Cycle 35: minimum-price-stays-same
Cycle 36: next-link Location: 19 Link-Price: 98 Current-Best: 76

Cycle 37: minimum-price-stays-same
Cycle 38: next-link Location: 20 Link-Price: 86 Current-Best: 76

Cycle 39: minimum-price-stays-same
Cycle 40: next-link Location: 21 Link-Price: 120 Current-Best: 76

Cycle 41: minimum-price-stays-same
Cycle 42: next-link Location: 22 Link-Price: 80 Current-Best: 76

Cycle 43: minimum-price-stays-same
Cycle 44: next-link Location: 23 Link-Price: 80 Current-Best: 76

Cycle 45: minimum-price-stays-same
Cycle 46: next-link Location: 24 Link-Price: 100 Current-Best: 76

Cycle 47: minimum-price-stays-same
Cycle 48: next-link Location: 25 Link-Price: 86 Current-Best: 76

Cycle 49: minimum-price-stays-same
Cycle 50: next-link Location: 26 Link-Price: 66 Current-Best: 76

Cycle 51: new-minimum-price
Cycle 52: DONE!!! Best price is: 66

Total Time: 782.30005 sec
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scanning the link at location 26 in the list of results.

The list actually contains 44 links in the result list

(�gure 1.2). The production system stops at link lo-

cation 26 because of the way it implements elements

of the rational analysis described above. Productions

��P3: Next-link�� and ��P6: Done�� match very similar

patterns in declarative memory. In fact, on every

cycle that P3 or P6 �res in the trace, the other pro-

duction also matches. In production system termi-

nology, P3 and P6 form a con�ict set when on a

particular cycle they both match the current pattern

in the goal stack and declarative memory. In such

cases, the utility of each production in the con�ict set

is evaluated and used to perform con�ict resolution to

determine which production to execute.

Production ��P6: Done�� is associated with a utility

that corresponds to R discussed above: the overall rate

of gain. I simply assumed that this corresponds to

how the production system values its time. For the

trace in table 1.2, I assumed that the production

system valued its time at R … $10/hour.

Production ��P3: Next-link�� is associated with a

utility that corresponds to g0(t) discussed above: the

rate of savings that would be achieved by looking at

the next link: expected savings from scanning next

link/time to scan link (in hours). The appendix dis-

cusses how expected savings is computed assuming

the distribution of hotel prices evident in �gure 1.2.

From self-observation, I noted that it took 30 sec (30/

3600 hour) to scan a link on the Web site depicted in

�gure 1.1. The competition between productions P3

and P6 implements the key idea of Charnov�s Mar-

ginal Value Theorem: As long as the rate of savings

expected for production ��P3: Next-link�� is greater

than the overall rate of gain, R, associated with ��P6:

Done,�� then the system continues to scan links;

otherwise, it quits.

Summary

I have presented this simple concrete example to

sketch out the overall framework and approach of

Information Foraging Theory before beginning more

abstract discussion of framework and method. At this

preliminary stage, it was necessary to gloss over unre-

alistic assumptions about Web use and the technical

details of the analysis and model. However, it is im-

portant to point out two realistic aspects of the

example. First, as will become clear in chapter 3, the

Web does have a patchy structure (e.g., Web sites and

search results), and diminishing returns within those

information patches is common. For instance, �gure

1.6 is based on data from a study of medical infor-

mation seeking (Bhavnani, 2005).5 Bhavnani, Jacob,

Nardine, and Peck (2003) asked melanoma experts

to identify melanoma risk facts that they identi�ed as

important for a melanoma patient to understand.

Figure 1.6a shows the distribution of melanoma risk

facts across Web pages. Very few pages contain all

14 expert-identi�ed melanoma risk concepts, but

many contain one of the melanoma risk facts. Figure

1.6b is an estimate of the number of melanoma risk

facts that a user would encounter as a function of

visits to melanoma-related pages (Bhavnani et al.,

2003). Note that it is a diminishing returns curve
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�gure 1.6 (a) The distribution of number of key
concepts about melanoma risk across Web pages,
and (b) the cumulative number of key concepts en-
countered as a function of size of sample of pages
(Bhavnani, 2005; Bhavnani et al., 2003).
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and that the user is expected to require 25 page visits

to �nd all expert-identi�ed melanoma risk facts.

In the remaining sections of this chapter, I pro-

vide an overview of broader framework and method.

The remainder of this book is about the empirical

and theoretical details.

Man the Informavore

All men by nature desire knowledge.�Aristotle,
Metaphysics

The human propensity to gather and use information

to adapt to everyday problems in the world is a core

piece of human psychology that has been largely ig-

nored in cognitive studies. George A. Miller (1983),

however, recognized the centrality of this human

propensity to our cognitive natures and argued that

mankind might fruitfully be viewed as a kind of in-

formavore: a species that hungers for information in

order to gather it and store it as a means for adapting

to the world. Picking up on this idea, Dennett (1991)

traced out a plausible evolutionary history in which

he suggested that our ancestors might have developed

vigilance behaviors that required surveying and as-

sessing the current state of the environment, much

like the prairie dogs who pop up on two feet to per-

form their situation appraisals or the harbor seals that

break the surface in the middle of a beach break to

check out whether the surfers are friends, foe, or prey.

Adaptive pressures to gain more useful, actionable

knowledge from the environment could lead to the

marshaling of available cognitive and behavioral ma-

chinery, resulting in organisms, such as primates, that

have active curiosity about the world and themselves.

Humans, of course, are extreme in their reliance on

information, with language and culture, and now

modern technology, providing media for transmis-

sion within and across generations. Humans are the

Informavores rex of the current era.

George Miller�s notion of humans as informavores

suggests that our genes have bestowed upon us an

evolving behavioral repertoire that now includes the

technological aspects of our culture associated with

�nding, saving, and communicating information. It is

common in evolutionary discussions to distinguish be-

tween genotype and phenotype (Johanssen, 1911). The

genotype is the blueprint for an individual. What gets

passed from one generation to the next (if it survives

and reproduces) are the genotypic blueprints. Phe-

notypes are the outward manifestation of the geno-

type. Typically, people think of this as the bodily

structure and behavior of the individual organism.

However, Dawkins (1989) introduced the notion of

extended phenotype to clarify the observation that

the genotype has extended effects on the world at

large that go beyond the actual body and behavior of

the individual. Not only do beavers have tails, but they

use them to make dams. Not only do spiders have legs,

but they use them to make webs. Humans have not

only brains but also external technology for storing

information, and information foraging strategies that

can be invoked to call forth the right knowledge, at

the right time, to take useful action. It remains an

open question as to why humans have evolved such

information collection strategies�a question that I

raise again at the end of this book.

The Adaptive Pressure of the Wealth
of Information

Thanks to science and technology, access to factual
knowledge of all kinds is rising exponentially while drop-
ping in unit cost. . . . We are drowning in information,
while starving for wisdom.�E. O. Wilson, Consilience

Information Foraging Theory emerges from a serious

consideration of Miller�s notion of informavores. A

serious consideration of the concept leads to ques-

tions regarding the adaptive forces that drive human

interaction with information. Simon (1971) articu-

lated the basic design problem facing us: ��What in-

formation consumes is rather obvious: it consumes

the attention of its recipients. Hence a wealth of in-

formation creates a poverty of attention, and a need

to allocate that attention ef�ciently among the over-

abundance of information sources that might con-

sume it�� (pp. 40�41).

According to statistics compiled by the University

of California�Berkeley School of Information Sci-

ence (Lyman & Varian, 2003), almost 800 megabytes

of recorded information are produced per person per

year, averaged over the estimated 6.3 billion people

in the world. This is the equivalent of about 30 linear

feet of books. In an information-rich world, the real

design problem to be solved is not so much how to

collect and distribute more information but rather

how to increase the rate at which persons can �nd

and attend to information that is truly of value to

them.
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The Principle of the Extremization
of Information Utility as a Function
of Interaction Cost

An investment in knowledge always pays the best
interest.�Benjamin Franklin

In modern society, people interact with information

through technology that more or less helps them �nd

and use the right knowledge at the right time. In

evolutionary terms, one can argue that increasing the

rate of gain of valuable information increases �tness.

As Sir Francis Bacon observed, ��knowledge is power.��

Power (control over the world to achieve one�s goals)

can be improved by better knowledge, or lower costs

of access and application of knowledge. In evolu-

tionary terms, an agent�s �tness is improved to the

extent that it can predict and control the environ-

ment in order to solve the problems it faces in every-

day life. In psychological terms, increasing the rate at

which people can �nd, make sense of, and use valu-

able information improves the human capacity to

behave intelligently. We should expect adaptive sys-

tems to evolve toward states that maximize gains of

valuable information per unit cost (Resnikoff, 1989,

p. 97). A useful way of thinking about such adapta-

tion is to say that

Human-information interaction systems will tend
to maximize the value of external knowledge
gained relative to the cost of interaction.

Schematically, we may characterize this maximiza-

tion tendency6 as

max
Expected value of knowledge gained

Cost of interaction

� �

: (1:3)

Cognitive systems engaged in information foraging

will exhibit such adaptive tendencies, and they will

prefer technologies that tend to maximize the value

(or utility) of knowledge gained per unit cost of in-

teraction. For instance, sensory systems appear to

evolve in ways that deliver more bits of information for

the amount of calories expended. Similarly, of�ces,

with their seeming chaotic mess of piles of papers,

books, and �les, appear to become organized in ways

that optimize access costs of frequently needed infor-

mation (Case, 1991; Malone, 1983; Soper, 1976).

Resnikoff (1989, pp. 112�117) presented a mathe-

matical analysis suggesting that physical library cata-

log card systems would become arranged in ways that

minimized manual search time. Information Forag-

ing Theory assumes that people prefer information-

seeking strategies that yield more useful information

per unit cost. People tend to arrange their environ-

ments (physical or virtual) to optimize this rate of gain.

People prefer, and consequently select, technology

designs that improve returns on information foraging.

The Exaptation of Food Foraging Mechanisms

Natural selection favored organisms�including our

human ancestors�that had better mechanisms for

extracting energy from the environment and translat-

ing that energy into reproductive success. Organisms

with better food-foraging strategies (for their particular

environment) were favored by natural selection. Our

ancestors evolved perceptual and cognitive mecha-

nisms and strategies that were very well adapted to the

task of exploring the environment and �nding and

gathering food. Information Foraging Theory assumes

that modern-day information foragers use perceptual

and cognitive mechanisms that carry over from the

evolution of food-foraging adaptations.

If information foraging is like food foraging, then

models of optimal foraging developed in the study of

animal behavior (Stephens & Krebs, 1986) and an-

thropology (Winterhalder & Smith, 1992) should be

relevant. Figure 1.5 presents the conventional patch

model and Charnov�s Marginal Value Theorem as a

possible analog for information foraging at a Web

site. A typical optimal foraging model characterizes

an agent�s interaction with the environment as an

optimal solution to the tradeoff of costs of �nding,

choosing, and handling food against the energetic

bene�t gained from that food. These models would

look very familiar to an engineer because they are

basically an attempt to understand the design of an

agent�s behavior by assuming that it is well engi-

neered (adapted) for the problems posed by the en-

vironment. Information foraging models include

optimality analyses of different information-seeking

strategies and technologies as a way of understanding

the design rationale for user strategies and interaction

technologies.

Optimal foraging theorists assume that energy, orig-

inating predominantly from the sun, seeps through the

food chain to be deposited in various plants and ani-

mals that are distributed variably through the envi-

ronment. Food foragers may have different mecha-
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nisms and strategies available to them for navigating

through the environment. Their potential sources of

food may have different prevalences in different hab-

itats and may have different pro�tabilities in terms of

how many calories can be extracted when foraged.

The optimal forager is one who has the strategies,

mechanisms, diets, and so forth, that maximize the

calories gained per unit of effort expended.7 Similarly,

Information Foraging Theory assumes that informa-

tion comes to be stored in various prevalences in dif-

ferent kinds of repositories, in various forms and

media. The information forager has different means

available for navigating and searching the information

environment, and different information sources have

different pro�tabilities in terms of the interaction cost

required to gain useful information. As suggested by

equation 1.3, the optimal information forager is one

who maximizes the value of knowledge gained per

unit cost of interaction.

Application to Human-Information
Interaction

The legacy of the Enlightenment is the belief that en-
tirely on our own we can know, and in knowing, under-
stand, and in understanding, choose wisely.�E. O. Wilson,
Consilience

Human-information interaction (HII) is a nascent

�eld that is concerned with how people interact with,

and process, outwardly accessible information in ser-

vice of their goals.8 It adopts an information-centric

approach rather than the computer-centric approach

of the �eld of human-computer interaction (HCI)

(Lucas, 2000). This shift to an information-centric

focus is a natural evolution for the �eld of HCI be-

cause of the increasing pervasiveness of information

services, the increasing transparency of user inter-

faces, the convergence of information delivery tech-

nologies, and the trend toward ubiquitous computing.

Access to the Internet is pervasive in the developed

world through land lines, satellite, cable, and mobile

devices. The �eld of HCI, over the past two decades

and more, has led to the development of computers

and computer applications that are transparent to

users performing their tasks. In parallel, the business

world around consumer media technologies shows

excitement over the convergence of television, cell

phones, personal computers, PDAs (personal digital

assistants), cars, set-tops, and other consumer elec-

tronics devices, as well as the convergence among the

means for transporting information, such as the In-

ternet, radio, satellite, and cable. Research on ubiqui-

tous computing looks forward to a world in which

computational devices are basically everywhere in our

homes, mobile devices, cars, and so on, and these

devices can be marshaled to perform arbitrary tasks for

users. The net effect of these trends is to make comput-

ers invisible, just as electricity and electric motors are

invisible in homes today (Lucas, 2000). As computers

become invisible, and information becomes ample

and pervasive, we expect to see a shift in studies from

HCI to HII. Rather than focus on the structure of de-

vices and application programs, the focus of HII re-

search must center on content and interactive media.

Information Foraging Theory arose during the

1990s, coinciding with an explosion in the amount of

information that became available to the average

computer user and with the development of new

technologies for accessing and interacting with infor-

mation. The late 1980s witnessed several strands of

HCI research that were devoted to ameliorating prob-

lems of exploring and �nding electronically stored

information. It had become apparent that users could

no longer remember the names of all their electronic

�les, and it was even more dif�cult for them to guess

the names of �les stored by others (Furnas, Landauer,

Gomez, & Dumais, 1987). One can see proposals in

the mid- to late 1980s HCI literature for methods to

enhance users� ability to search and explore external

memory. Jones (1986) proposed the Memory Ex-

tender (ME), which used a model of human associa-

tive memory (Anderson, 1983) to automatically re-

trieve �les represented by sets of keywords that were

similar to the sets of keywords representing the users�

working context. Latent Semantic Analysis (LSA;

Dumais, Furnas, Landauer, Deerwester, & Harsh-

man, 1988) was developed to mimic human ability to

detect deeper semantic associations among words,

such as ��dog�� and ��cat,�� to similarly enhance infor-

mation retrieval. Interestingly, the work on ME and

LSA was contrasted with work in the ��traditional�� �eld

of information retrieval in computer science, which

had a relatively long history of developing automated

systems for storing and retrieving text documents. The

CHI �88 conference where LSA was introduced also

hosted a panel bemoaning the fact that automated

information retrieval systems had not progressed to the

stage where anyone but dedicated experts could op-

erate them (Borgman, Belkin, Croft, Lesk, & Land-

auer, 1988). Such systems, however, were the direct
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ancestors of modern search engines found on the

World Wide Web.

Hypermedia also became a hot topic during the

late 1980s, with Apple�s introduction of HyperCard

in 1987, the �rst ACM Conference on Hypertext in

1987, and a paper session at the CHI �88 conference.

The very idea of hypertext can be traced back to

Vannevar Bush�s Atlantic Monthly article, ��As We

May Think,�� published in 1945. Worried about schol-

ars becoming overwhelmed by the amount of infor-

mation being published, Bush proposed a mechanized

private �le system, called the Memex, that would

augment the memory of the individual user. It was

explicitly intended to mimic human associative

memory. Bush�s article in�uenced the development of

Douglas Engelbart�s NLS (oNLine System), which

was introduced to the world in a tour-de-force dem-

onstration at the 1968 Fall Joint Computer Confer-

ence. The demonstration of NLS�a system explicitly

designed to ��augment human intellect�� (Engelbart,

1962)�also introduced the world to the power of

networking, the mouse, and point-and-click interac-

tion. Hypertext and hypermedia research arose during

the late 1980s because personal computing power,

networking, and user interfaces had evolved to the

point where the visions of Bush and Engelbart could

�nally be realized for the average computer user.

The con�uence of increased computing power,

storage, networking and information access, and hy-

permedia research in the late 1980s set the stage for the

widespread deployment of hypermedia in the form

of the World Wide Web. In 1989, Tim Berners-Lee

(1989) proposed a solution to the problems that were

being faced by the CERN community in dealing with

distributed collections of documents, which were stored

on many types of platforms, in many types of formats.

This proposal led directly to the development of

HTML, HTTP, and, in 1990, the release of the World

Wide Web. Berners-Lee�s vision was not only to provide

users with more effective access to information but

also to initiate an evolving web of information that re-

�ected and enhanced the community and its activities.

The emergence of the Web in the 1990s provided

new challenges and opportunities for HCI. The in-

creased wealth of accessible content, and the use of

the Web as a place to do business, exacerbated the

need to improve the user experience on the Web.

The usability literature that has evolved sur-

rounding the Web user experience is incredibly rich

with design principles and maxims (Nielsen, 2000;

Spool, Scanlon, Schroeder, Snyder, & DeAngelo,

1999), the most important of which is to test designs

with users. Much of this literature is based on a mix of

empirical �ndings and expert (��guru��) opinion. A

good deal of it is con�icting. The development of

theory in this area can greatly accelerate progress and

meet the demands of changes in the way we interact

with the Web. Greater theoretical understanding and

the ability to predict the effects of alternative designs

could bring greater coherence to the usability litera-

ture and provide more rapid evolution of better

designs. In practical terms, a designer armed with

such theory could explore and explain the effects of

different design decisions on Web designs before the

heavy investment of resources for implementation and

testing. This exploration of design space is also more

ef�cient because the choices among different design

alternatives are better informed: Rather than ran-

domly generating and testing design alternatives, the

designer is in a position to know which avenues are

better to explore and which are better to ignore. Un-

fortunately, cognitive engineering models that have

been developed to deal with the analysis of expert

performance on well-de�ned tasks involving applica-

tion programs (Pirolli, 1999) have little applicability to

understanding foraging through content-rich hyper-

media, and consequently new theories are needed.

Methodological Adaptationism

Adaptationist reasoning is not optional; it is the heart and
soul of evolutionary biology.�D. C. Dennett, Darwin�s
Dangerous Idea

The concept of informavores, and concern with the

application domain of HII, leads us to reconsider the

dominance of strictly mechanistic analyses of HCI.

Miller, in his 1983 article about ��informavores,�� com-

mented on the incompleteness of the mechanistic

approach by using the following analogy:

Insofar as a limb is a lever, the theory of levers
describes its behavior�but a theory of levers does
not answer every question that might be asked
about the structure and function of the limbs of
animals. Insofar as the mind is used to process
information, the theory of information processing
describes its behavior�but a theory of informa-
tion processing does not answer every question
that might be asked about the structure and func-
tion of the minds of human beings. (p. 112)
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Information processing (mechanistic) analyses of

HCI�by themselves�give only partial explanations.

They provide mechanistic explanations of the ��le-

vers�� of the mind. In reaction to this inadequacy,

Information Foraging Theory has been guided by the

heuristics and explanatory framework of methodo-

logical adaptationism, and the speci�c version of it

developed by Anderson (1990) called rational anal-

ysis (see also Oaksford & Chater, 1998). The illus-

tration above concerning hotel prices on the Web

involved a very simple rational analysis. Methodo-

logical adaptationism presumes that it is a good

heuristic for scientists to assume that evolving, behav-

ing systems are rational, or well designed, for ful�lling

certain functions in certain environments. There is an

assumption of ecological rationality regarding the

behavior of the system being observed (Bechtel, 1985;

Dennett, 1983, 1988, 1995; Gigerenzer, 2000). The

adaptationist approach involves a kind of reverse en-

gineering in which the analyst asks (a) what envi-

ronmental problem is solved, (b) why is a given sys-

tem a good solution to the problem, and (c) how is

that solution realized (approximated) by mechanism.

Versions of methodological adaptationism have

shaped research programs in behavioral ecology (e.g.,

Mayr, 1983; Stephens & Krebs, 1986; Tinbergen,

1963), anthropology (e.g., Winterhalder & Smith,

1992), and neuroscience (e.g., Glimcher, 2003). The

approach gained currency in cognitive science during

the 1980s as a reaction to ad hoc models of how people

performed complex cognitive or perceptual tasks. At

that time, models of cognition and perception were

generally mechanistic, detailing perceptual and cog-

nitive structures and the processes that transformed

them. The Model Human Processor (MHP) and

GOMS (Goals, Operators, Methods, and Selection

rules; Card, Moran, & Newell, 1983) are cognitive

engineering examples in the �eld of HCI that derive

from this approach. The MHP speci�es a basic set of

information storage and processing machinery, much

like a speci�cation of the basic computer architecture

for a personal computer. GOMS speci�es basic task

performance processes, much like a mechanical pro-

gram that ��runs�� on the MHP.

Around the same time that GOMS and MHP

were introduced into HCI, there emerged a concern

among cognitive scientists that mechanistic infor-

mation processing models, by themselves, were not

enough to understand the human mind (Anderson,

1990; Marr, 1982). A major worry was that mecha-

nistic models of cognition had been developed in an

ad hoc way and provided an incomplete explanation

of human behavior. It had become common practice

to cobble together a program that simulated human

performance on some task and then claim that the

program was in fact a theory of the task (Marr, 1982,

p. 28). Anderson (1990) lamented that cognitive mod-

elers ��pull out of an in�nite grab bag of mechanisms

bizarre creations whose only justi�cation is that they

predict the phenomena in a class of experiments. . . .

We almost never ask the question of why these

mechanisms compute the way they do�� (p. 7, em-

phasis added).

Figuring out a mechanistic account of human

behavior�for instance, with MHP analysis�is no

small feat.However, as theMiller quote above suggests,

such accounts do not explain everything. The mind is

not just any old arbitrary, cobbled-together machine;

rather, it is a fantastically complex machine that has

been designed by evolution to be well tailored to the

demands of surviving and reproducing in the envi-

ronment. The adaptationist approach recognizes that

one can better understand a machine by understand-

ing its function. By this I mean both that (a) adapta-

tionist accounts make more sense and (b) the search

for better understanding proceeds at a faster pace.

Levels of Explanation

The analysis of people interacting with information

involves interrelated layers of explanation. This is

because scienti�c models in this area assume that

human activity is (a) purposeful and adaptive, which

requires a kind of rational analysis, (b) based on knowl-

edge, (c) computed by information processing mech-

anisms, which are (d) realized by physical, biological,

processes. Table 1.3 presents a summary of the rele-

vant framework that has emerged in the behav-

ioral sciences (see, e.g., Anderson, 1990; Cosmides,

Tooby, & Barow, 1992; Gigerenzer, 2000; Winter-

halder & Smith, 1992a).

Rational analysis, in the case of Information

Foraging Theory, focuses on the task environment

that is the aim of performance, the information en-

vironment that structures access to valuable knowl-

edge, and the adaptive �t of the HII system to the

demands of these environments. Rational analysis

assumes that the structure of behavior can be un-

derstood in terms of its adaptive �t to the structure

and constraints of the environment. The analysis of
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searching for hotel prices on Web involved a rational

analysis of the expected savings to be gained from

information search and an analysis of the rational

choice to make when faced with decisions of whether

to continue search or to give up. When performing a

rational analysis the theorist may be said to take a

design stance (Dennett, 1995) that focuses on an

analysis of the functionality of the system with respect

to its ostensive purpose. At this level, the analyst acts

most purely as an engineer concerned with why users�

behavior is rational given the task context in which it

occurs, and it is assumed that users are optimizing

their performance in achieving their goals.

Knowledge-level analysis concerns the knowledge

content involved in achieving goals. Knowledge-level

analysis involves descriptions of a system in inten-

tional terms with the assumption that behavior is the

product of purposes, preferences, and knowledge.

The knowledge level has been important in arti�cial

intelligence since its introduction by Newell (1982).

A knowledge-level analysis of the task of searching for

hotel prices on the Web was a prerequisite to the

speci�cation of the production rules and chunks in-

volved in the cognitive simulation. Dennett (1988)

de�ned an observer who describes a system using

an intentional vocabulary (e.g., ��know,�� ��believe,��

��think��) as one taking an intentional stance. Typi-

cally, a task analysis focuses mainly on an analysis of

users� knowledge, preferences, perceptions, and ac-

tions, with respect to the goal and environment. At

this level of analysis, it is assumed that users deploy

their knowledge to achieve their goals, and the focus

is on identifying what knowledge is involved.

Modern cognitive psychology assumes that the

knowledge level can be given a scienti�c account

(i.e., be made predictable) by explaining it in terms

of mechanistic information processing (Newell,

1990). This is the cognitive level of explanation. This

level of analysis focuses on the properties of the in-

formation processing machinery that evolution has

dealt to humans to perceive, think, remember, learn,

and act in what we would call purposeful and knowl-

edgeable ways. This is the level of most traditional

theorizing in cognitive psychology and HCI�the

level at which computational models may, in prin-

ciple, be developed to simulate human cognition.

GOMS (Card et al., 1983), described above, is an

example of an analysis method aimed at cognitive-

level analysis. Cognitive architectures such as ACT-R

(Anderson et al., 2004) or Soar (Newell, 1990) and

the simulations developed in those architectures are

developed at the cognitive level. The production

system speci�ed in table 1.1 was a simple example of

a cognitive-level analysis.

Accounts at the cognitive level are assumed to

be instantiated at the biological level by the physi-

cal machinery of the brain and body. The biological

level of explanation speci�es the proximal physical

mechanisms underlying behavior. For instance, An-

derson et al. (2004) have recently presented results

table 1.3 Levels of explanation.

Level Question Stance Analysis Elements Examples

Rational What environmental
problem is solved?

Why is this solution
a good one?

Design � States, resources,
state dynamics

� Constraints,
affordances

� Feasible strategies
� Optimization criteria

� Optimal foraging
theory

� Information
Foraging Theory

Knowledge What does the system
know?

Intentional � Environment
� Goals, preferences
� Knowledge
� Perception, action

� Knowledge-level
analysis

Cognitive How does the
system do it?

Information
processing

� Cognitive states
� Cognitive processes

� ACT-R
� Soar

Biological How does the system
physically do it?

Biophysical � Neural processes � Neural models

18 INFORMATION FORAGING THEORY



suggesting the mapping of the ACT-R architecture

onto neural structure and functioning.

Phenomena at Different Time Scales
of Behavioral Analysis

Many of our goals can drive our behavior for days,

months, and even years. These longer term goals

are typically realized by task structures composed of

many shorter term goals. Card et al. (1983) suggested

that there is a base level of tasks, called the unit task

level, that controls immediate behavior. Unit tasks

empirically take about 10 seconds. To an approxi-

mation, unit tasks are where ��the rational rubber

meets the mechanistic road.�� To an approximation,

the structure of behavior above the unit task level

largely re�ects a rational structuring of the task within

the constraints of the environment, whereas the struc-

ture within and below the unit task level re�ects

cognitive and biological mechanisms. Phenomena

occur at multiple grain sizes of time, and effects

propagate in both upward and downward directions:

Rational/ecological structuring goes downward from

longer time scales of phenomena, and environment

and proximal mechanism constraints go upward. A

signi�cant claim of the framework adopted by In-

formation Foraging Theory from Newell (1990) and

Anderson (2002) is that the phenomena of human

cognition can be decomposed and modeled at many

different time scales.

Newell (Newell, 1990; Newell & Card, 1985)

argued that human behavior arises from a hierarchi-

cally organized system in which the basic time scale

of operation of each system level increases by a factor

of 10 as one moves up the hierarchy (table 1.4). The

phenomena at each band in table 1.4 are largely

dominated by different kinds of factors. Behavioral

analysis at the biological band (approximately milli-

seconds to tens of milliseconds) is dominated by

biochemical, biophysical, and especially neural pro-

cesses, such as the time it takes for a neuron to �re.

The psychological band of activity (approximately

hundreds of milliseconds to tens of seconds) has

been the main preoccupation of cognitive psychology

(Anderson, 1983, 1993; Newell, 1990). At this time

scale, it is assumed that elementary cognitive mech-

anisms play a major part in shaping behavior. The

typical unit of analysis is a single response function,

involving a perceptual input stage, a cognitive stage,

and a stage of action output�for instance, �nding a

word in the menu of a text editor and moving a mouse

to select the menu item. The mechanisms involved at

this level of analysis include elementary information

processing functions such as memory storage and

retrieval, recognition, categorization, comparison of

one information element to another, and choosing

among alternative actions.

As the time scale of activity increases, ��there will be

a shift towards characterizing a system . . . without re-

gard to the way in which the internal processing ac-

complishes the linking of action to goals�� (Newell,

1990, p. 150). This is the rational band of phenomena

(minutes to days). The typical unit of analysis at this

level is the task, which is de�ned, in part, by a goal. It is

assumed that an intelligent agent will have preferences

for actions that it perceives to be applicable in its en-

vironment and that it knows will move the current

situation toward the goal. So, on the one hand, goals,

knowledge, perceptions, actions, and preferences

shape behavior. On the other hand, the structure,

constraints, and resources of the environment in

which the task takes place�called the task environ-

ment (Newell & Simon, 1972)�will also greatly

shape behavior. Explanations at the rational band as-

sume that behavior is governed by rational principles

and that it is largely shaped by the structure and con-

straints of the task environment, although it is also

realized that people are not in�nitely and perfectly

rational (Simon, 1955). The rationale for behavior at

this level is its adaptive �t to its task environment.

table 1.4 Time scale on which human action
occurs.

Scale
(seconds) Time Unit Band

107 Months Social
106 Weeks
105 Days

104 Hours Rational
103 10 minutes
102 Minutes

101 10 seconds Cognitive
100 1 second
10�1 100 milliseconds

10�2 1 millisecond Biological

Different bands are quite different phenomenological worlds.

Adapted from Newell (1990, p. 122).
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Task Environments and
Information Environments

To understand information foraging requires analysis

of the environment in addition to analysis of the for-

ager. The importance of the analysis of the environ-

ment to psychology was a more general point made by

Brunswik (1952) and Simon (1981). It is useful to

think of two interrelated environments in which an

information forager operates: the task environment and

the information environment. The classical de�nition

of the task environment is that it ��refers to an envi-

ronment coupled with a goal, problem or task�the

one for which the motivation of the subject is as-

sumed. It is the task that de�nes a point of view about

the environment, and that, in fact allows an environ-

ment to be delimited�� (Newell & Simon, 1972, p. 55).

The task environment is the scientist�s analysis of those

aspects of the physical, social, virtual, and cognitive

environments that drive human behavior.

The information environment is a tributary of

knowledge that permits people to more adaptively

engage their task environments. Most of the tasks that

we identify as signi�cant problems in our everyday life

require that we get more knowledge�become better

informed�before taking action. What we know, or do

not know, affects how well we function in the impor-

tant task environments that we face in life. External

content provides the means for expanding and im-

proving our abilities. The information environment,

in turn, structures our interactions with this content.

Our particular analytic viewpoint on the information

environment will be determined by the information

needs that arise from the embedding task environ-

ment. From the standpoint of a psychological analysis,

the information environment is delimited and de�ned

in relation to the task environment.

Problem Spaces

A large class of tasks may be understood as variations on

problem solving. Indeed, Newell (1990) essentially

argued that all of cognition could be understand by

taking this stance. Newell and Simon (1972) charac-

terized problem solving formally as a process of search

through a problem space. A problem space consists of

an initial situation called the start state and some de-

sired situation called the goal state. Other situations

that may occur while solving the problem are inter-

mediate states. Problem-solving operators (e.g., actions

performed by the problem solver) transform problem

states. For instance, the problem faced by a toddler

seeking to eat cookies from a cupboard may have an

initial state that consists of the child standing on the

�oor and a chair some distance away, and the child

may apply problem-solving operators such as moving

the chair, climbing on the chair, and opening the

cupboard to transform the initial state toward the goal

state. The various states that can be achieved are re-

ferred to as a problem space (or sometimes a state

space). Often, any given problem state is a situation

that affords many possible actions (operators). In such

cases, each state branches to many possible subsequent

states, with each branch in each path corresponding to

the application of an operator. The problem is to �nd

some path through the maze of possible states. Finding

this path is a process of search through a problem space.

Ill-Structured Problems and
Knowledge Search

Well-structured problems, such as puzzles and games,

have well-de�ned initial states, goal states, operators,

and other problem constraints, which contrasts with

the ill-structured problems. Ill-structured problems,

such as choosing a medical treatment or buying a

house, typically require additional knowledge from

external sources in order to better understand the

starting state, to better de�ne a goal, or to specify the

actions that are afforded at any given state (Simon,

1973). People typically need to perform knowledge

search in order to solve their ill-structured problems

(e.g., to de�ne aspects of a problem space that permit

effective or ef�cient problem space search). The in-

formation environment is a potential source of valu-

able knowledge that can improve our ability to achieve

our goals, especially when they involve ill-structured

tasks. More generally, knowledge shapes human func-

tionality, and consequently external access to large

volumes of widely variegated knowledge may improve

our range of adaptation because we can solve more

problems, or solve problems using better approaches.

Knowledge-Level Systems

Knowledge, if it does not determine action, is dead
to us.�Plotinus

Externally available content provides us with knowl-

edge valuable to the achievement of our goals. Given

the central role of external knowledge to Informa-

20 INFORMATION FORAGING THEORY



tion Foraging Theory, it is useful to review Newell�s

(1982) in�uential framework for the study of knowl-

edge systems. This provides a way of characteriz-

ing adaptation in terms of knowledge content. This

framework, which arises from the cognitive sciences,

assumes that knowledge shapes the functionality of

our cognitive abilities and that intelligent behavior

depends on �nding and using the right knowledge

at the right time. This framework was largely articu-

lated by Allen Newell (1982, 1990, 1993) and Daniel

Dennett (1988, 1991). Traditionally (e.g., Dennett,

1988; Newell, 1990), the information processing

system under consideration for analysis is an unaided

person or computer program working in some task

environment. However, we can extend the approach

to understand a system that consists of a person tightly

coupled with technological support and access to a

teeming world of information.

Over the course of 20 years, Newell (Moore &

Newell, 1973; Newell, 1982, 1990; Newell et al., 1992)

developed a set of ideas about understanding how

physical systems could be scienti�cally characterized

as knowledge systems. A parallel set of ideas was de-

veloped by Dennett (1988) in his discussion of inten-

tional systems.9 The notions developed by Newell and

Dennett derive from the philosophical contributions of

Brentano (1874/1973). The knowledge level was de-

veloped by Newell (1982) as a way to address questions

about the nature of knowledge and the nature of sci-

enti�cally ascribing knowledge to an agent.

In the frame of reference developed by Newell and

Dennett, scienti�c observers ascribe knowledge to be-

having systems. A key assumption is that knowledge-

level systems can be speci�ed completely by reference

to their interaction with the external world, without

reference to the mechanical means by which the in-

teractions take place. A knowledge-level system con-

sists of an agent behaving in an environment. The

agent consists of a set of actions, a set of perceptual

devices, a goal (of the agent), and a body of knowledge.

The operation of such systems is governed by the

principle of rationality: If the agent knows that one of

its actions will lead to a situation preferred according

to its goal, then it will intend the action, which will

then be taken if it is possible. As Newell (1982) stated,

knowledge is ��whatever can be ascribed to an agent,

such that its behavior can be computed according to

the principle of rationality�� (p. 105). In essence, the

basic observations at the knowledge level are state-

ments of the form:

In situation S, agent A behaves as if it has knowl-
edge K.

Value and Structure of Knowledge

New knowledge is the most valuable commodity on earth.
The more truth we have to work with, the richer we
become.�Kurt Vonnegut, Breakfast of Champions

Our ability to solve ill-structured problems such

buying a house, �nding a job, or throwing a Super

Bowl party is, in large part, a re�ection of the par-

ticular external knowledge used to structure and solve

the problem. Consequently, the value of external con-

tent may often ultimately be measured in the im-

provements to the outcomes of an embedding task.

The value of knowledge gained may be measured in

terms of what additional value it attains for the agent.

Of course, a lot of external content provides no new

knowledge (e.g., perhaps it is ��old news�� to us), or

information that does not contribute to our goals.

In simple well-structured problems, the value of

knowledge gained from information foraging can be

generally expressed as a difference between two strat-

egies: one that rationally uses knowledge acquired by

foraging from external information sources to choose

among outcomes, and another that does not use such

information.10 For instance, suppose a man who has a

budget wants to purchase a product on the Web and

knows of a price comparison Web site (e.g., as in

the hotel illustration above). If blindly purchasing a

product costs a certain expected amount X, but after

visiting the price comparison Web site the man will be

able to �nd a less expensive product Y, then the net

value of that knowledge will be X � Y � C, where C is

some measure of the cost of gaining the knowledge. If

the analysis in the hotel price illustration above were

correct, then the expected price of a hotel (without

knowledge) would have been about $86 (see the ap-

pendix), but after looking at a Web site, the price

would have been $66, and the time cost would be

approximately 13 min/60 min � $10/hr … $2, so the

value of the Web site knowledge would be $86 �
$66 � $2 … $18. In simple cases such as these, one

may imagine that a person could completely con-

struct a decision model in which all possible decision

outcomes are speci�ed, as well as the relationships

among information sources, potential results from

those sources, and the relation of information results

gathered to decisions and the utility of those decisions.

Indeed, arti�cial intelligence systems (e.g., Grass &
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Zilberstein, 2000) have been developed to use this

approach to tackle problems such as purchasing a

digital camera, purchasing a removable media device,

or choosing a restaurant. Real-world problems, how-

ever, typically require a more complicated analysis of

the value of knowledge.

Knowledge and Intelligence

Knowledge is of two kinds: we know a subject ourselves,
or we know where we can �nd information upon it.
�Samuel Johnson

Physically instantiated cognitive systems are limited in

their ability to behave as rational knowledge-level sys-

tems. Newell (1990) proposed that ��intelligence is the

ability to bring to bear all the knowledge that one has in

service of one�s goals�� (p. 90).11 This corresponds to

our everyday notion that we can behave more intelli-

gently by being better informed. In the idealized view

of the knowledge level, everything in a body of

knowledge (including all possible entailments) is in-

stantly accessible. However, people, or any physical

system, can only approximate such perfect intelligent

use of knowledge because the ability to bring forth the

right knowledge at the right time is physically limited.

The laws of physics limit the amount of information

that can be stored or processed in a circumscribed

portion of space and time. Within those limits, how-

ever, intelligence increases with the ability to bring to

bear the right knowledge at the right time.

Dennett (1991, pp. 222�223) notes that this con-

ception of knowledge and intelligent reasoning goes

back to Plato (Theaetetus, 197�198a, Cornford

translation). Plato saw knowledge as something that

one could possess like a man who keeps captured

wild birds in an aviary. There is a sense in which the

man has the birds, but a sense in which he has none

of them until he can control each bird by calling

forth the bird at will. Plato saw intelligent reasoning

as not only having the birds but also having the

control to bring forth the right bird at the right time.

Newell�s discussions focused on unaided intelli-

gent systems (people or computer programs) and the

knowledge that they had available in their local

memories. But there is a sense in which the world

around us provides a vast external memory teeming

with knowledge that can be brought forth to remedy a

lack on the part of the individual. We can extend

Newell�s notion of intelligence and argue that intel-

ligence is improved by enhancement of our ability to

bring forth the right knowledge at the right time from

the external world. Of course, the world (both phys-

ical and virtual) shapes the manner in which we can

access and transform knowledge-bearing content and

thus shapes the degree to which we reason and be-

have intelligently. The task of acquiring knowledge

from external sources is itself a task that can be per-

formed more or less intelligently.

Consider the illustration above in which a hypo-

thetical user searches for hotel prices on the Web.

From a knowledge-level perspective, the user has

knowledge of how to navigate the Web, operate the

Web site search engine, and perform price compari-

sons. The illustration assumed that the user applies

this knowledge �awlessly, but the structure of the

Web environment determines the rate at which new

knowledge (of hotel prices) is gained. A different de-

sign could improve the rate at which the user accom-

plishes the task. For instance, if the Web site sorted

hotels by both quality (star rating) and price, the user

could accomplish the task much faster. Although the

user�s navigation and calculation knowledge has not

changed, it is being applied more ef�ciently because of

a change in the information environment. In other

words, a change in the information environment has

made the user more intelligent.

Rational Analysis

Anderson�s rational analysis approach is a speci�c

version of methodological adaptationism applied to

the development of cognitive theory. It was inspired

by Marr�s (1982) in�uential approach to computer

vision, in which Marr argued that visual processing

algorithms (and other intelligent information pro-

cesses) are ��likely understood more readily by un-

derstanding the nature of the problem being solved

than by examining the mechanism (and the hard-

ware) in which it is solved�� (p. 92).12 The term ��ra-

tional analysis�� was inspired by rational choice theory

in economics, in which people are assumed to be

rational decision makers who optimize their behav-

ioral choices in order to maximize their goals (utility).

In rational analysis, however, it is not the person who

is the agent of rational choice, but rather it is the

selective forces of the environment that choose better

biological and behavioral designs.

Anderson has used rational analysis to study the

human cognitive architecture by assuming that nat-

ural information processing mechanisms involved in
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such functions as memory (Anderson & Milson,

1989; Anderson & Schooler, 1991) and categoriza-

tion (Anderson, 1991) were well designed by evolu-

tionary forces to meet the problems posed by the

environment. The key assumption behind rational

analysis could be stated as

Principle of rationality: The cognitive system op-
timizes the adaptation of the behavior of the or-
ganism.

As developed by Anderson (1990), rational analysis

requires a focus on understanding the structure and

dynamics of the environment. This understanding

provides a rationale for the design of information

processing mechanisms. Anderson proposed the fol-

lowing recipe for rational analysis:

1. Precisely specify the goals of the agent.
2. Develop a formal model of the environment to

which the agent is adapted.
3. Make minimal assumptions about the compu-

tational costs.
4. Derive the optimal behavior of the agent

considering items 1�3.
5. Test the optimality predictions against data.
6. Iterate.

Note, generally, the emphasized focus on optimal

behavior under given goals and environmental con-

straints and the minimal assumptions about the

computational structure that might produce such

behavior.

Probabilistically Textured Environments

Interaction with the information environment differs

in a fundamental way from well-de�ned task envi-

ronments that have been the dominant paradigms in

HCI, such as expert text editing (Card et al., 1983) or

telephone assistance (Gray et al., 1993). In contrast to

such tasks�in all but the most trivial cases�the in-

formation forager must deal with a probabilistically

textured information environment (Brunswik, 1952).

In contrast to application programs such as text editors

and spreadsheets, in which actions have fairly deter-

minate outcomes,13 foraging through a large volume

of information involves uncertainties�for a variety of

reasons�about the location, quality, relevance, ve-

racity, and so on, of the information sought and the

effects of foraging actions. The ecological rationality

of information foraging behavior must be analyzed

through the theoretical lens and tools appropriate to

decision making under uncertainty. The determinate

formalisms and determinate cognitive mechanisms

that are characteristic of the HCI paradigm are inad-

equate for the job of theorizing about information

foraging in probabilistically textured environments.

Models developed in Information Foraging Theory

draw upon probabilistic models, and especially

Bayesian approaches, and they bear similarity to eco-

nomic models of decision making (rational choice)

under uncertainty and engineering models.

Role of Optimization Analysis

Optimization models14 are a powerful tool for study-

ing the design features of organisms and artifacts.

Consequently, optimization models are often found

in the toolbox of the methodological adaptationist

(e.g., as found in Anderson�s rational analyses). Op-

timization models are mathematical models bor-

rowed from engineering and economics. They are

used to model a rational decision process faced with a

problem and constraints. In engineering, they are

used as a tool for quantifying the quality of design

alternatives with respect to some problem speci�ca-

tion. In economics, they are used typically to char-

acterize a rational decision maker choosing among

courses of action in order to maximize utility (a ra-

tional choice model), often operating in situations of

limited or uncertain knowledge about possible out-

comes. Optimization models in general include the

following three major components:

� Decision assumptions that specify the decision
problem to be analyzed, such as the amount of
time to spend on an activity, or whether or not to
pursue a particular type of information content.

� Currencyassumptions,which identifyhowchoices
are to be evaluated, such as time or money or
other resources.

� Constraint assumptions, which limit and de�ne
the relationships among decision and currency
variables. Examples of constraints include the rate
at which a person can navigate through an infor-
mation access interface, or the value of results
returned by bibliographic search technology.

All cognitive agents must reason about the world with

limited time, knowledge, and computational power.

Consequently, the use of optimization models can-

not be taken as a hypothesis that human behavior is
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omnisciently rational, with perfect information and

in�nite computational resources. Indeed, unbounded

optimization models are likely to fail in predicting

anycomplexbehavior. Anderson�s (1990) rational anal-

ysis approach is based on optimization under con-

straints. The basic idea is that the constraints of the

environment place important shaping limits on the

optimization that is possible.

Optimization models, such as rational choice

models from economics, allow us to de�ne the be-

havioral problems that are posed by the environment,

and they allow us to determine how well humans (or

animals or other cognitive agents) perform on those

problems. This does not mean that one assumes that

the cognitive agent is performing the same calcula-

tions as the optimization models. It is possible that

simple mechanisms and heuristics may achieve op-

timal or near optimal performance once the limits of

the environment are taken into account (Todd &

Gigerenzer, 2000). This is the essence of bounded

rationality and the notion that real cognitive agents

make choices based on satis�cing (Simon, 1955).

Generally, ��One does not treat the optimization

principle as a formula to be applied blindly to any

arbitrarily selected attribute of an organism. It is nor-

mally brought in as a way of expanding our under-

standing from an often considerable base of knowl-

edge�� (Williams, 1992, p. 62). As eloquently stated by

the evolutionary theorist G. C. Williams (1992),

Organisms are never optimally designed. Designs
of organs, developmental programs, etc. are lega-
cies from the past and natural selection can affect
them in only two ways. It can adjust the numbers
of mutually exclusive designs until they reach
frequency-dependent equilibria, often with only
one design that excludes alternatives. It can also
optimize a design�s parameters so as to maximize
the �tness attainable with that design under cur-
rent conditions. This is what is usually meant by
optimization in biology. An analogy might be the
common wooden-handled, steel-bladed tool de-
sign. With different parameter values it could be
a knife, a screw driver, or many other kids of tool�
many, but not all. The �xed-blade constraint
would rule out turning it into a drill with meshing
gears. The wood-and-steel constraint would rule it
out as a hand lens. (p. 56, emphasis original)

Activities can be analyzed according to the value

of the resource currency returned and costs incurred.

Generally, one considers two types of costs: (1) re-

source costs and (2) opportunity costs (Hames, 1992).

Resource costs are the expenditures of calories, money,

and so forth, that are incurred by the chosen activity.

Opportunity costs are the bene�ts that could be

gained by engaging in other activities but are for-

feited by engaging in the chosen activity. For in-

stance, junk mail incurs a resource cost in terms of

the amount of money (not to mention trees) involved

in delivering the junk, but it also incurs an oppor-

tunity cost for the recipients who read the junk be-

cause they have forgone gains that could have been

made by engaging in other activities.

Production System Theories of Cognition

Production systems have had a successful history in

psychology (Anderson et al., 2004; Neches, Langley,

& Klahr, 1987) since their introduction into the �eld

by Newell (1973a). The ACT family of production

system theories has the longest history of these kinds of

cognitive architectures. The seminal version of the

ACT theory was presented in Anderson (1976), shortly

after Newell�s (1973b) challenge to the �eld of cogni-

tive psychology to build uni�ed theories of cognition,

and it has undergone several major revisions since

then (Anderson, 1976, 1983, 1990, 1993; Anderson

et al., 2004; Anderson & Lebiere, 1998). Until recently,

it has been primarily a theory of higher cognition and

learning, without the kind of emphasis on perceptual-

motor processing found in EPIC (Kieras & Meyer,

1997) or MHP (Card et al., 1983). The success of ACT

as a cognitive theory has been historically in the study

of memory (Anderson & Milson, 1989; Anderson &

Pirolli, 1984), language (Anderson, 1976), problem

solving (Anderson, 1993), and categorization (Ander-

son, 1991). As a learning theory, ACT has been suc-

cessful (Anderson, 1993) in modeling the acquisition

of complex cognitive skills for tasks such as computer

programming, geometry, and algebra and in under-

standing transfer of learning across tasks (Singley &

Anderson, 1989). ACT has been strongly tested (An-

derson, Boyle, Corbett, & Lewis, 1990) by application

in the development of computer tutors, and less so in

the area of HCI. The production system models pre-

sented in this book are extensions of the ACT theory.

Figure 1.7 presents the basic cognitive architec-

ture used in this book. It couples the basic ACT-R

architecture to a module that computes information

scent (a kind of utility metric), which for convenience I

will call the ACT-Scent15 architecture. This book
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presents speci�c models of Web foraging (SNIF-ACT

1.0 and SNIF-ACT 2.0) and Scatter/Gather (Cutting,

Karger, Pedersen, & Tukey, 1992) browsing (ACT-IF)

that were developed within the ACT-Scent architec-

ture. The architecture includes a declarative memory

containing chunks, a procedural memory containing

production rules, and a goal stack containing the hier-

archy of intentions driving behavior. The information

scent module is a new addition to ACT that is used to

compute the utility of actions based on an analysis of

the relationship of content cues from the user interface

to the user�s goals. The theory behind this module is

described in detail in chapter 4.

Summary

Humans are informavores. We adapt to the world by

seeking and using information. As a result, we create

a glut of information. This causes a poverty of at-

tention and a greater need to allocate that attention

effectively and ef�ciently. Information Foraging The-

ory is being developed to understand and improve

human-information interaction. It borrows from op-

timal foraging theory, but it assumes that humans

optimize the gain of information per unit time cost.

The following chapters deal with various applications

of the framework, method, and theory. This includes

analyses of information foraging on the Web, in

document browsers, and in social networks. In addi-

tion, I discuss design and engineering applications of

the theory that illustrate its practical utility.

APPENDIX

The analysis presented in this section is provided for

those readers with a background that includes exposure

to basic probability theory and who are interested in the

mathematics involved in calculating the expected value

of searching for better hotel prices in the illustration.

The observed frequency distribution of Paris two-

star hotel prices presented in �gure 1.2 is presented

in �gure 1.A.1. Also shown in �gure 1.A.1 is a best-�t

lognormal distribution, which is typically found for

commodity prices and would probably be character-

istic of many of the things that one could buy on the

Web. The estimate was performed by starting with

themaximumlikelihoodestimates,whichcanbebiased

for small samples, and then adjusting the parameters

slightly to obtain best linear �ts on a Q�Q plot.

A variable X (e.g., prices) is lognormal distributed

if the natural log of X, ln(X ), is normal distributed.

The probability density function of the lognormal

distribution is

f (x) … 1

xs
������

2p
p e�(ln(x)� m)2

=2s2

, (1:A:1)

where m is the mean of ln(X ) and s is the standard

deviation of ln(X ). For the prices in �gure 1.A.1,

m … 4.45 and s … 0.13. The cumulative distribution

function, F(x), for the lognormal is typically com-

puted numerically using the cumulative distribution

function F for the normal distribution,

F(x) … F
ln(x)�m

s

� �

: (1:A:2)

The expected value of a lognormal distributed vari-

able X is

E(X) … em þ s2=2, (1:A:3)

External World

Declarative
Memory

Procedural
(Production)

Memory

Conflict
Set

Information
Scent

Module

Goal
Memory

Spreading

Activation

Spreading

Activation

�gure 1.7 The ACT-Scent cognitive architecture.
Information perceived from the external world is
encoded into chunks in declarative memory. Goals
and subgoals controlling the �ow of cognitive behav-
ior are stored in goal memory. The system matches
production rules in production memory against goals
and activated information in declarative memory, and
those that match form a con�ict set. The matched
rule instantiations in the con�ict set are evaluated by
utility computations performed in the information
scent module. Based on the utility evaluation, a single
production rule instantiation is executed, updates are
made to goal memory and declarative memory, if
necessary, and the cycle begins again. ACT-Scent uses
a process called spreading activation to retrieve
information (in declarative memory) and to evaluate
productions (in the information scent module).
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and the variance is

var(X) … (es2�1)e2m þ s2

: (1:A:4)

The distribution in �gure 1.A.1 has an expected value

of $86.35 and a variance of $127.09.

The expected minimum price in �gure 1.3 and

expected savings in �gure 1.4 were computed from

the probability density function of minimum values.

Assume that prices are sampled n times from a ran-

dom variable, such as X characterized above. The

minimum value of that sample of size n can be

characterized as another random variable Yn,

Yn … minfXi, X2, . . . , Xng, (1:A:5)

where the Xi are independent random draws from

the random variable X. From the basic de�nitions of

probability, the cumulative density function for the

minimum of a randomsampleof size n, Yn, is de�ned as

the probability that a randomly sampled value (mini-

mum prices in this case) will be less than some value y,

Gn(y) … Pr(Yn � y), (1:A:6)

which is equivalent to the probability that the mini-

mum Yn is not greater than y,

Gn(y) … 1� Pr(Yn > y): (1:A:7)

The probability, Pr(Yn > y), that the minimum value

of a sample is greater than some value y would be the

same as the probability that every sampled value from

the random variable X was greater than y, so

Pr(Yn > y) … Pr(X1 > y) � Pr(X2 > y) � � �
Pr(Xn > y)

… Pr(X > y)n:

(1:A:8)

Since the meaning of the cumulative density func-

tion for X is

F(x) … Pr(X � x), (1:A:9)

one can de�ne

Pr(X > y) … 1�F(y): (1:A:10)

Now, one can substitute equation 1.A.10 into 1.A.8

into 1.A.7 to get

Gn(y) … Pr (Yn � y)

… 1� Pr (Yn > y)

… 1� Pr (X > y)n

… 1� 1�F(y)‰ �n

(1:A:11)

The probability density function is de�ned as the

derivative of the cumulative density function. So,

taking the derivative of equation 1.A.11, the pro-

bability density function of the random variable Yn

representing the minimum of a sample of size n

drawn from variable X will be

gn(y) … n 1�F(y)‰ �n � 1f (y), (1:A:12)

where the probability density function f(x) and cu-

mulative density function F(x) are for the sampled

random variable X. The expected minimum prices

and expected savings in �gures 1.3 and 1.4 were

computed using equation 1.A.5 assuming the

probability density function and cumulative distri-

bution function in equations 1.A.1 and 1.A.2, with

the parameters m … 4.45 and s … 0.13 estimated in

�tting the lognormal in �gure 1.A.1.

The utility of production ��P3: Next-link�� in table

1.1 was computed by determining the expected sav-

ings that would be attained by randomly sampling the

lognormal distribution of prices in �gure 1.A.1 while

having a minimum price m already in hand. This

expected savings can be computed by integrating over

all savings achieved by prices less than m and greater

than 0, weighted by the probability of getting those

lower prices. So the expected savings to be achieved
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�gure 1.A.1 The observed distribution of Paris two-
star hotel prices is approximately lognormal, which is
typical of commodity prices.
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by a randomly sampled price x given that one has a

current minimum price m in hand is

S(m) …
Z m

0
(m�x) f (x)dx: (1:A:13)

Given the lognormal distribution of prices in �gure

1.A.1, if the lowest price found so far were $100, then

the expected savings of taking looking at the next

price would be

S($100) … $14:43:

Some other example expected savings would be

S($90) … $6:62

S($80) … $1:86

S($70) … $0:23

Notes

1. http://www-2.cs.cmu.edu/~hzhang/Newell.Good
Science.

2. This example is inspired by a microeconomic
analysis of the value of information in consumer pur-
chasing by Stigler (1961).

3. For early uses of production systems in psychol-
ogy, see Newell (1973a) and Newell and Simon (1972).
For overviews and history of their use in psychology, see
Anderson (1993), and Klahr, Langley, and Neches (1987).

4. For those familiar with ACT-R 5.0, the produc-
tions run without the perceptual-motor modules or the
subsymbolic computations.

5. Data provided courtesy of Suresh Bhavnani.
6. I purposely use the phrase ��maximization ten-

dency�� because of the assumption that this is an ongoing
process limited by physical and biological bounds on
instantaneously achieving omniscient optimality. It is a
bounded rationality process.

7. The implicit assumption is that energy translates
into �tness.

8. As far as I can tell, the term ��human-information
interaction�� �rst appeared in the public literature in the
title of Gershon (1995).

9. To clarify terminology, what I am calling ��knowl-
edge�� corresponds to Newell�s (e.g., 1982, 1990) use of the
term.This, in turn, corresponds to Dennett�s useof ��belief,��
which is consistent with common philosophical usage.

10. This de�nition is based on Pearl (1988, pp. 313�
314).

11. Newell�s technical de�nition was that ��[a] sys-
tem is intelligent to the degree that it approximates a
knowledge-level system�� (Newell, 1990). Knowledge-
level systems are discussed below.

12. See Glimcher (2003) for how Marr�s work in-
spired a parallel rational analysis approach to under-
standing neuroscience.

13. Barring bugs, of course.
14. Following natural selection theorist G. C. Wil-

liams (1992), I prefer the term ��optimization model��
over ��optimality model�� to acknowledge a focus on cor-
rective processes rather than optimal end states.

15. Pronounced ��accent.��
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2

Elementary Foraging Models

The detailed analyses and models presented in later

chapters draw upon various parts of optimal foraging

theory as well as other general approaches to rational

analysis. This chapter provides a very general over-

view of the conventional models of optimal foraging

(Stephens & Krebs, 1986). These conventional mod-

els make unrealistic assumptions about the �ne-

grained details of cognition�for instance, they as-

sume perfect knowledge of the environment�but at

the rational band of analysis (see chapter 1) they

provide useful �rst approximations to information

foraging situations. When the details of these models

are elaborated by assumptions about the limitations

of the cognitive architecture, they have resulted in

highly predictive models such as SNIF-ACT (chapter

5) and ACT-IF (chapter 6).

The approach taken in this chapter is to present

several basic foraging models and then illustrate the

models with idealized examples from food foraging

and from information foraging. Like illustrations used

in physics that require the assumption of frictionless

surfaces, the examples of food foraging and infor-

mation foraging are purposely simpli�ed in order to

focus the discussion on the rational models. The

complexity of the real world will be met head-on in

later chapters.

Optimal Foraging Theory

As implied by its name, Information Foraging The-

ory has drawn heavily upon models and techniques

developed in optimal foraging theory (Stephens &

Krebs, 1986). Optimal foraging theory seeks to ex-

plain adaptations of organism structure and behavior

to the environmental problems and constraints of

foraging for food. Optimal foraging theory originated

in attempts to address puzzling �ndings that arose in

ethological studies of food seeking and prey selection

among animals (Stephens & Krebs, 1986). For in-

stance, why would a predator eat a particular kind of

prey in one environment but ignore the same prey in
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another environment? It has had an enormous impact

in anthropology (Smith & Winterhalder, 1992), where

it has been used to explain dietary choice (Kaplan &

Hill, 1992), variations in land tenure and food sharing

(Smith, 1987), group size (Smith, 1981), habitat choice

(Cashdan, 1992), time allocation (Hames, 1992), and

many other aspects of hunter-gatherer culture. Inde-

pendent of the development of Information Foraging

Theory, Sandstrom (1994) has suggested that optimal

foraging theory may successfully address the complex

empirical phenomena that arise in the scienti�c lit-

eratures.

Optimal foraging theory (Stephens & Krebs, 1986)

seeks to explain adaptations of organism structure

and behavior to the environmental problems and

constraints of foraging for food. A key assumption is

that animals (including humans) should have well-

designed food-seeking strategies because higher rates

of energy consumption should generally translate in

higher reproductive success.1 Consider a hypothetical

predator, such as a bird of prey. Its �tness will depend

on its reproductive success, which in turn will depend

on how well it �nds food that provides energy. The

environment surrounding this bird will have a patchy

structure, with different types of habitat (e.g.,meadows,

woodlots, and ponds) containing different amounts

and kinds of prey. For the bird of prey, different types

of habitat and prey will yield different amounts of net

energy if included in the diet. Furthermore, the dif-

ferent prey types will have different distributions over

the environment. For the bird of prey, this means that

the different habitats or prey will have different access

or navigation costs. Different species of birds of prey

might be compared on their ability to extract energy

from the environment. Birds are better adapted if they

have evolved strategies that better solve the problem of

maximizing the amountof energy returnedper amount

of effort. Conceptually, the optimal forager is one that

has the best solution to the problem of maximizing the

rate of net energy returned per effort expended, given

the constraints of the environment in which it lives.

In their comprehensive survey of the �eld, Ste-

phens and Krebs (1986) begin with discussion of two

conventional models: (a) the patch model, which ad-

dresses decisions related to searching and exploiting

an environment that has a patchy distribution of re-

sources, and (b) the diet model, which addresses what

kinds of things to eat and what to ignore. I follow their

discussion using some simple hypothetical examples.

As with many elegant theoretical models, these are

certainly wrong in detail, but they provide under-

standing and insight. It should be noted that there are

many other optimal foraging models in the literature

that consider many other fascinating decision prob-

lems. Stephens and Krebs (1986) provide an excellent

introduction to many of these models in behavioral

ecology,WinterhalderandSmith(1992b)collectmany

summary papers in the study of human behavior,

Mangel and Clark (1988) present dynamic models of

foraging, and Bell (1991) provides an excellent sum-

mary of observed food search strategies in the context

of optimal foraging theory.

Patch Model

Chapter 1 presents a summary version of Charnov�s

Marginal Value Theorem (Charnov, 1976), which was

developed in optimal foraging theory to deal with pre-

dictions of the amount of time an organism would

forage in a patch before leaving to search for another.

This is the conventional patch model in optimal forag-

ing theory. Here, I provide a more detailed account of

Charnov�s Marginal Value Theorem, and additional

mathematical details are presented in the appendix.

Characterizing Foraging in Patches
by the Rate of Gain

As discussed in chapter 1, the conventional patch

model deals with situations in which organisms face

an environment in which food is distributed in a pat-

chy manner. By analogy, information patch models

may deal with situations in which the information

forager deals with information that is distributed in a

patchy manner. For instance, chapters, books, book-

shelves, and libraries impose a hierarchical structure

on the arrangement of information. Our of�ces tend to

have a patchy structure that evolves from use. For in-

stance, my immediate desk work area may contain a

variety of information items that are involved in some

current task. Within arms� reach there may be a variety

of piles of documents that may contain topically re-

lated content (e.g., my pile of papers about foraging

theory) or task-related content (e.g., my itinerary and

receipts related to a travel expense report). Within the

of�ce there are also �le cabinets (with a hierarchically

organized �le system), bookshelves, and books. As

discussed in chapter 3, the World Wide Web also

exhibits a patchy structure.
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Figure 2.1 presents the idealized view of a forager

assumed in the conventional patch model. It is as-

sumed that a forager, such as a bird, searches through

the environment and on occasion encounters a patch

of food resources, such as a berry bush containing clus-

ters of berries. The forager must expend some amount

of between-patch time getting to the next food patch.

Once in a patch, the forager engages in within-patch

foraging and faces the decision of continuing to forage

in the patch or leaving to seek a new one. Frequently,

as an animal forages within a patch, the amount of

food diminishes or depletes. For instance, a bird might

deplete the berries on a bush as it eats them. In such

cases, there will be a point at which the expected fu-

ture gains from foraging within a current patch of food

diminish to the point that they are less than the ex-

pected gains that could be made by leaving the patch

and searching for a new one.

To generalize across the two domains of food

foraging and information foraging, let us assume that

the activity of foraging results in some total gain, G,

in some measurable thing of value. In the case of

food foraging, this may be the number of calories of

energy gained from eating. In the case of information

foraging, this might be some other utility that results

from achieving a goal. Figure 2.2a is a hypothetical

graph of the cumulative gains for the foraging be-

havior illustrated in �gure 2.1. The time expended on

the forager�s search process proceeds left to right on

the abscissa of the graph in �gure 2.2a. As depicted in

�gure 2.1, the hypothetical forager encounters one

patch, consumes a couple of berry clusters, leaves

the patch, searches for a new patch, encounters a

second patch, and consumes a couple of more berry

clusters. For simplicity, �gure 2.2a assumes that the

cumulative rewards gained from consuming the berry

clusters in �gure 2.1 come in discrete chunks. Each

time a cluster of berries is consumed, the cumulative

gains jump up in �gure 2.2a. As time proceeds to the

right in �gure 2.2a, some gains accumulate in the

�rst patch encountered, no further gains accumulate

between patches, and some more gains are added

after encountering the second patch.

The patch model assumes that the total foraging

time of the hypothetical bird can be divided into two
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�gure 2.2 (a) The cumulative gain of rewards for
the behavior of the hypothetical forager in �gure 2.1,
and (b) the average rate of gain R expressed as a ratio
of total rewards (G) to the total between-patch time
(TB) and total with-patch time (TW).

Forager�s search

Within-patch search Between-patch search

Patch 1

Within-patch rewards

G = total value (rewards)
TB = total between-patch search time
TW = total within-patch search time
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TB = total between-patch search time
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Patch 2

�gure 2.1 A hypothetical bird forages in an envi-
ronment consisting of patches containing berry clus-
ters. The foraging behavior can be characterized in
terms of total rewards (G) and time spent between
(TB) and within (TW) patches.
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mutually exclusive activities: (a) the total amount of

time spent between patches (searching for the next

patch), TB, and (b) exploiting within patches TW

(e.g., handling and consuming the berries).2 Figure

2.2b is a rearrangement of the plot in �gure 2.2a. In

�gure 2.2b, the right portion of the graph plots the

cumulative gains shown in �gure 2.2a purely as a

function of the within-patch foraging time TW. Fig-

ure 2.2b also graphically illustrates the average rate of

gain or rewards, R, which, as will become clear, is the

key factor that characterizes the ef�ciency of the

forager. The average rate of gain of value (calories;

utility), R, is the ratio of the net value accumulated,

G, divided by the total time spent between and with

patches:

R … G

TB þ TW
value -units/time cost units: (2:1)

(The appendix lists the de�nitions of variables used

in models throughout this chapter.)

Holling�s Disk Equation: Using Averages
to Characterize the Rate of Gain

Figure 2.2 (and equation 2.1) characterizes the av-

erage rate of gain, R, in terms of total rewards gained

and total time taken. This formulation is not partic-

ularly useful, but with some additional assumptions,

it can be used to develop a way of characterizing the

average rate of gain in terms of averages (rather than

totals). The assumptions are as follows:

1. The number of patches foraged is linearly
related to the amount of time spent in between-
patch foraging activities.

2. Theaverage timebetweenpatches,when search-
ing, is tB.

3. The average gain per patch is g.
4. The average time to process each patch is tW.

On average, as the forager searches for patches, the

patches will be encountered at an average rate of

l … 1=tB patches per unit time: (2:2)

This rate can be used to de�ne the expected total

cumulative gain, G, as a linear function of between-

patch foraging time,

G … lTBg: (2:3)

In equation 2.3, lTB is the product of the total time

spent searching for patches multiplied by the average

rate of encountering patches, which produces the

expected total number of patches that will be encoun-

tered. Since each patch produces an average reward,

g, the product lTBg gives the expected total cumu-

lative gain. Likewise, the expected total amount of

within-patch time can be represented as

TW … lTBtW : (2:4)

Equation 2.4 multiplies the expected number of

patches encountered lTB by the average amount of

within-patch foraging time, tW.

Given the assumptions listed above, equation 2.1

can be rewritten to express the expected average rate of

gain,

R … lTBg

TB þ lTBtW

… lg

1 þ ltW
:

(2:5)

This is what is known as Holling�s Disk Equation

(Holling, 1959).3 In contrast to equation 2.1, which

requires knowledge about total times and rewards,

Holling�s Disk Equation is expressed in terms of av-

erages that could be obtained by sample measure-

ments from an environment. Holling�s Disk Equation

serves as the basis for deriving several optimal forag-

ing models. Stephens and Charnov (1982) have

shown that broadly applicable stochastic assumptions

lead asymptotically to equation 2.5 as foraging time

grows large.

Additional Characterizations of the

Environment: Prevalence and Pro�tability

Two useful characterizations of the foraging envi-

ronment can be made using equation 2.5 as context

(see �gure 2.3). In comparison to some baseline envi-

ronment containing a patchy distribution of resources

(�gure 2.3a), another environment may be ��richer��

because it has a higher prevalence of patches (�gure

2.3b). In comparison to �gure 2.3a, the average time

spent between patches is expected to be decrease in

�gure 2.3b because patches are more prevalent. An-

other way that the environment can become richer is

because the patches themselves yield a higher rate of

reward (�gure 2.3c). In other words, the patches are

more pro�table.
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In Holling�s Disk Equation (equation 2.5), the

prevalence of patches is captured by l (the rate of

encountering patches). Increased prevalence would

mean that the average time between patches, tB, would

decrease, and the rate l … 1/tB would increase. The

pro�tability, p, of patches can be de�ned as the a

ratio of the net rewards gained from a patch to the

time cost of within-patch foraging,

p … g=tW :

In the context of equation 2.5, increasing the pro-

�tability of within-patch activities increases the overall

rate of gain, R. Decreasing the between-patch costs,

tB (or equivalently, increasing prevalence l), increases

the overall rate of return, R, toward an asymptote

equal to the pro�tability of patches, R … p.

Within-Patch Gain Curves

The conventional patch model of optimal foraging

theory (Stephens & Krebs, 1986) is an elaboration of

equation 2.5. It addresses the optimal allocation of

total time to between-patch activities versus within-

patch activities, under certain strong assumptions.

Rather than having a �xed average gain per patch and

a �xed average within-patch cost, the patch model

assumes (a) that there may be different kinds of pat-

ches and (b) that the expected gains from a patch can

depend on the within-patch foraging time, which is

under the control of the forager. The optimization

problem is how much time to spend in each kind of

patch before leaving to search for another.

The conventional patch model (Stephens &

Krebs, 1986) assumes that the environment can be

characterized as consisting of P different patch types

that can be indexed using i … 1, 2, . . . , P. The con-

ventional patch model assumes that the forager must

expend some amount of time going from one patch

to the next. Once in a patch, the forager faces the

decision of continuing to forage in the patch or leaving

to seek a new one. Each type of patch is character-

ized by

li, the prevalence (or encounter rate) of patches
of type i,

tWi, the patch residence time, which is the amount
of time the forager spends within patches of type i,
and

gi(tWi), the gain function for patches of type i that
speci�es the expected net gain as a function of
foraging time spent within type i patches.

As discussed in the appendix, the conventional patch

model can be expressed as a variant of Holling�s Disk

Equation (equation 2.5):

R …
XP

i … 1
ligi(tWi)

1 þ
XP

i…1
litWi:

(2:6)

The numerator of equation 2.6 sums the expected

gains from encountered patches of each type, and the

denominator sums the time spent between and within

patches.

Figure 2.4 presents a simple kind of gain function.

In this example, there is a linear increase in cumu-

lative within-patch gains up to the point at which the

patch is depleted. In the information foraging do-

main, this might occur, for example, for an infor-

mation forager who collects relevant citations from a

�nite list of citations returned by a search engine,

where the relevant items occur randomly in the list.

(a)

(b)

(c)

�gure 2.3 In comparison to some baseline patchy
environment (a), another foraging environment may
be richer because patches are more prevalent (b) or
because the patches themselves are more pro�table (c).
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As the forager processes the items, the cumulative

gain function increases linearly, and when the end of

the list is reached, the patch is depleted and the ex-

pected cumulative gain function plateaus.

Figure 2.5 illustrates graphically how the average

rate of gain, R, will vary with different time allocation

policies. Imagine that the forager�s environment is

composed of just one kind of patch that has the sim-

ple linear within-patch gain function that eventually

depletes, as illustrated in �gure 2.4. Assume that the

average time (tB) spent between patches is 1/li.

Imagine that the forager can decide among three

possible within-patch time allocation policies, t1, t2,

and t*, as illustrated in �gure 2.5. To see graphically

the average rate of gain R that would be achieved by

the different policies, one can plot lines, such as R*,

from the origin and intersecting with the gain func-

tion, gi, at each particular within-patch time policy,

such as t1, t2, or t*. The slope of these lines will be the

average rate of gain because the slope will correspond

to the expected amount of value gained from patches,

gi(tWi), divided by the average time spent in between-

patch activities, tB, and the time spent within patches,

tWi. For cases such as �gure 2.5 (linear but �nite

gains), a line, R*, tangent to gi and passing through

the origin gives a slope equal to the optimal average

rate of gain, and an optimal within-patch time allo-

cation policy of t*. Policies of staying for shorter pe-

riods of time within patches (t1) or longer (t2) yield

less than optimal average rates of gain. A forger should

stay in such linear gain patches until the patches are

exhausted (and no longer than that). When the patch

is exhausted, the forager should move on the next

patch.

Charnov�s Marginal Value Theorem

Animals often forage in a patch that will have di-

minishing returns. The example of the hotel Web

site in chapter 1 illustrates diminishing returns in the

domain of information foraging. As mentioned in

chapter 1, Charnov�s (1976) Marginal Value Theo-

rem was developed to deal with the analysis of time

allocation for patches that yield diminishing returns

curves, such as the ones depicted in �gure 2.1. The

theorem, presented in detail in the appendix, deals

with situations in which foraging within a patch has

a decelerating expected net gain function, such as

those in �gure 2.6a. The theorem implies that a for-

ager should remain in a patch as long as the slope of

gi (i.e., the marginal value of gi) is greater than the

average rate of gain R for the environment.

Figure 2.6 shows graphical representations of

Charnov�s Marginal Value Theorem that appear in

many discussions of optimal foraging theory.4 Figure

2.6a captures the basic relations for the situation in

which there is just one kind of patch-gain function.

The prevalence of patches in the environment (as-

suming random distribution) can be captured by ei-

ther the mean between-patch search time, tB, or the

rate at which patches are encountered is l … 1/tB. To

determine the optimal rate of gain, R*, one draws
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�gure 2.5 For the gain function in �gure 2.4, a
within-patch time allocation policy of t* yields an
optimal rate of gain (which is the slope of the line R*).
Time allocation policies that are less than t* (e.g., t1)
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�gure 2.4 A gain function, g, characterizing a type
of patch that yields rewards as a linear function of
within-patch time, up to the point at which the patch
is depleted.
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a line tangent to the gain function gi(tW) and passing

through tB to the left of the origin. The slope of the

tangent will be the optimal rate of gain, R. The point

of tangency also provides the optimal allocation to

within-patch foraging time, t*. The point of tangency

is the point at which the slope (marginal value) of gi

is equal to the slope of tangent line, which is the

average rate of gain R.

To capture �gure 2.6 mathematically, for the case

in which there is just one kind of patch, let R(tW) be

the overall rate of gain as a function of the time

allocation policy, and let g0 indicate the marginal

value (the derivative or instantaneous slope) of the

gain function g. For the case in which there is just

one kind of patch, the patch model in equation 2.6

could be stated as

R(tW) … lg(tW)

1 þ ltW
, (2:7)

Then, Charnov�s Marginal Value Theorem says that

the optimal time to spend within each patch is that

value t* that satis�es the equation

g0(t*) … R(t*)

… lg(t*)

1 þ lt*
:

(2:8)

The left side of equation 2.8 is the marginal rate of the

expected net within-patch gain function, and the right

side is the overall rate of gain. As discussed in more

detail in the appendix, for an environment in which

there are P types of patches, the overall rate of gain

depends on the time allocation policy t̂tWi for each

type of patch i. Charnov�s Marginal Value Theorem

says that the optimal set of t̂tWi value satis�es the

condition that the marginal rate of gain for each type

of patch is equal to the overall rate of gain,

g0
1 (̂ttW1) … R(̂ttw1, t̂tw2, . . . , t̂twP)

g0
2 (̂ttW2) … R(̂ttw1, t̂tw2, . . . , t̂twP)

.

.

.

g0
p (̂ttWP) … R(̂ttw1, t̂tw2, . . . , t̂twp)

(2:9)

It should be noted that this more general form of

Charnov�s Marginal Value Theorem, which deals

with multiple kinds of patches, is not neatly captured

by the simple one-patch model illustrated in �gure

2.6. It is also important to note that the theorem is

applied to situations in which the gain function even-

tually becomes negatively accelerated.

Effects of Between-Patch and
Within-Patch Enrichment

The conventional patch models of optimal foraging

theory deal with an unmoldable environment. The

forager must optimize its selection of feasible strate-

gies to �t the constraints of the environment. The

information forager, however, can often mold the en-

vironment to �t the available strategies. This process

is called enrichment.

�gure 2.6 (a) Charnov�s Marginal Value Theorem
states that the rate-maximizing time to spend in
patch, t*, occurs when the slope of the within-patch
gain function g is equal to the average rate of gain,
which is the slope of the tangent line R*; (b) the
average rate of gain increases with decreases in
between-patch time costs; and (c) under certain
conditions, improvements in the gain function also
increase the average rate of gain.

Gain

Within-patch
time

Between-patch
time

tB t*

R*

g(tW)(a)

Gain

Within-patch
time

Between-patch
time

tB1 t1*

g(tW)

tB2 t2*

R1

R2

Between-patch 

enrichment

(b)
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One kind of environmental enrichment is to re-

duce the average cost of getting from one information

patch to another. That is, the forager can modify the

environment so as to minimize the between-patch

foraging costs. Of�ce workspaces tend to evolve lay-

outs that seem to minimize the between-patch search

cost for needed information. Such enrichment ac-

tivities create a trade-off problem: Should one invest

in reducing between-patch foraging costs, or should

one turn to exploiting the patches?

A second kind of environmental enrichment in-

volves making information patches that yield better

returns of valuable information. That is, the forager

can modify the environment so as to improve within-

patch foraging results. For example, one may invest

time in constructing and re�ning keyword queries for

a search engine so that it returns lists with higher

proportions of potentially relevant document citations.

One may also enrich information patches by using �l-

tering processes. For instance, people often �lter their

readings on a topic by �rst generating and �ltering

bibliographic citations and abstracts. Many computer

systems for electronic mail, news, and discussion lists

now include �lters. Such enrichment activities create

a trade-off problem: Should one continue to enrich

patches to improve future within-patch foraging, or

should one turn to exploiting them?

We may use the conventional patch model to

reason qualitatively about these enrichment activi-

ties. Figure 2.6b illustrates the effects of enrichment

activities that reduce between-patch time costs. As

between-patch time costs are reduced from tB1 to tB2,

the overall rate of gain increases from the slope of R1

to the slope of R2, and optimal within-patch time de-

creases from t�1 to t�2. Not only does reducing between-

patch costs improve the overall average rate of gain,

but also the optimal gain is achieved by spending less

time within a patch (when the conditions satisfying

Charnov�s Marginal Value Theorem hold; see the

appendix).

Figure 2.6c illustrates the effects of enrichment

activities that improve the returns from a patch.

Figure 2.6c shows that as within-patch foraging gains

are improved from g1 to g2, the optimal average rates

of gain improve from the slope of R1 to R2 and the

optimal within-patch time decreases from t�1 to t�2.

Again, within-patch enrichment not only improves

the overall rate of gain but also reduces the optimal

amount of time needed to spend within patches (when

the conditions satisfying Charnov�s Marginal Value

Theorem hold; see the appendix).

Food Foraging Illustration: Birds
and Mealworms

To illustrate concretely the predictions of the con-

ventional patch model, I use data from one of the

earliest tests of the model in Cowie (1977). Great tits

(Parus major) were studied in a large arti�cial aviary

containing arti�cial trees. The branches of the arti-

�cial trees contained sawdust-�lled cups containing

hidden mealworms. These cups constituted the pat-

ches sought out by the birds. Hiding the mealworms

in sawdust in the cups produced a diminishing cu-

mulative food-intake curve as in �gure 2.6. Travel

time was increased experimentally to effect the

between-patch enrichment in �gure 2.6b. This was

done by placing lids on the sawdust-�lled cups con-

taining mealworms. Without the lids, the average

time to go from one cup to begin feeding in the next

cup took about 5 sec, and with the top on the cup the

travel time increased to 20 sec. Figure 2.7 shows

that�as predicted�the birds had a policy of leaving

patches earlier when the interpatch time was shorter

(�gure 2.7a) than when it was higher (�gure 2.7b).

To effect an enrichment of the cumulative gain

curves, as in �gure 2.6c, Cowie (1977) manipulated

the intercatch time of mealworms within the arti�cial

food patches (the cups). As predicted by the model in

�gure 2.6c, improvements in feeding rates within

patches produced shorter within-patch times. Al-

though these empirical studies do �nd deviations from

the conventional patch model, it has been generally

successfully studied in a variety of species and envi-

ronments (Stephens & Krebs, 1986).

Information Foraging Illustration:
Search Engines

Chapter 1 presents an illustration involving the search

for the lowest two-star hotel price in Paris on a hotel

Web site. Imagine an even more idealized case in

which there is an information worker whose job is to

take information-seeking tasks from a queue that ar-

rives by some electronic means such as e-mail, per-

form searches on the Web for those tasks, and return

as much relevant information as possible overall. As-

sume that for any given query the search engines

return links to documents, and if one were to actually
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read each and every document there would be a dimin-

ishing returns curve because there is some amount of

redundancy among documents and some �nite pool

of ideas that one is drawing upon. This characteriza-

tion has been found for medical topics (see �gure 1.6)

and is likely to be generally true of many domains.

Imagine that the search engines used by the in-

formation worker have very little variation in perfor-

mance. Assume that the worker is very good at ex-

amining the search result links and estimating the

expected amount of relevant (and previously unen-

countered) concepts or propositions in each docu-

ment. Figure 2.8 presents a hypothetical gain curve

for the number of relevant concepts or propositions

per document as a function of the order in which the

documents are returned by the typical search engine

used by this hypothetical information worker. The

cumulative gain curve, g1(t), was derived by �tting a

function to the data in Bhavnani et al. (2003) and

making the simplifying assumptions that (a) links can

be scanned and processed at an average rate of one

every 10 seconds (this includes scanning and possibly

cutting and pasting the links into a report) and (b)

other costs such as scrolling and paging through re-

sults can be ignored. The resulting gain function is

for the cumulative amount of new information en-

countered in search results as a function of time,

g1(t) … 2:76 ln(t)�2:83 concepts=sec (2:10)

Effects of Changes in Travel Time

Figure 2.8 shows the predicted effects on optimal

patch residence time of two hypothetical between-
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�gure 2.7 Increased travel time from (a) tB … 4.76
sec to (b) tB … 21.03 sec increased the observed
average patch-leaving time in Great Tits studied in
Cowie (1977). The predicted patch-leaving times are
indicated by the dashed lines, and are not signi�-
cantly different from the observed rates.
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�gure 2.8 (a) A reduction in between-patch travel
time from 60 s to 30 s reduces the optimal within-
patch time allocation from t*1 … 38 s to t*2 … 25 s, and
(b) improving the within-patch gain function from g1

to g2 reduces the optimal within-patch time alloca-
tion from t*1 … 38 s to t*3 … 29 s.
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patch travel time costs, which would represent

the time it takes to acquire a new task, navigate

to search engine, formulate and enter a query, and

wait for search engine results. In one case the

travel time is assumed to be tB … 60 sec, and in the

second case it is assumed to be tB … 30 sec. For

the case in which travel time is tB … 60, the overall

rate of gain R is

R … g1(tW)

tB þ tW

… g1(tW)

60 þ tW
:

(2:11)

In order to determine the optimal amount of time to

spend within information patches, tW … t*, we need

to determine when the slope of g1(tW) is equal to R.

We can do this by �nding the derivative

g0
1(tW) … d

dtW
g1(tW)

… d

dtW
[2:76 ln (tW)�2:83]

… 2:76

ttW

(2:12)

and then solving the equality

g0(t*) … R

2:76

t*
… g(t*)

60 þ t*

t* … 37:50 sec:

(2:13)

Solving for the case in which the travel time is tB …
30 sec, we �nd that

2:76

t*
… g(t*)

30 þ t*

t* … 25:06 sec:

(2:14)

A reduction in travel time of 30 seconds would cause

an optimal forager to reduce time in each informa-

tion patch by nearly 12 seconds. This is shown in

�gure 2.8.

Effects of Improved Processing of Links

Figure 2.8 shows the predicted effects of an im-

provement in the rate of processing links from 10

seconds per link to 5 seconds per link. The rate of

gain in this case would be

g2(tW) … 2:76 ln(t)�0:92: (2:15)

The derivative of the rate of gain remains the same as

in equation 2.12. Following the same steps as above,

one �nds that improving the time to process links

would result in the forager reducing the time spent

with each patch down to

t* … 29:22 sec: (2:16)

This reduction in optimal within-patch time alloca-

tion is illustrated in �gure 2.8.

Summary

The purpose of this illustration is to show the calcula-

tions involved in the conventional patch model to

make quantitative predictions, as well as to provide a

more concrete understanding of the qualitative rela-

tionships that it captures. Many simplifying assump-

tions are made, but later chapters �ll in some of the

details. Chapters 3�5 present more detailed rational

analyses and productions system models of Web use. It

should be noted, however, that there is some evidence

that changes in travel time on the Web have an effect

on patch residence time (Baldi, Frasconi, & Smyth,

2003), as qualitatively predicted by the conventional

patch model. In chapter 9, I discuss Web usability ad-

vice that centers on this relationship.

Diet Model

Imagine a hypothetical situation in which a bird of

prey, such as a red-tailed hawk (Buteo jamaicensis),

forages in a habitat that contains a variety of prey of

various sizes, prevalences, and ease of capture, such as

mice, ground squirrels, rabbits, and hares. Typically,

such a hawk may soar for hours on end, or perch in a

high tree, waiting to detect potential prey. The envi-

ronment poses the following problem for the predator:

What kinds of prey should the predator pursue, and

what kinds should be ignored? One may think of this

in terms of diet breadth: A broad (generalized) diet

will include every type of prey encountered, but a

narrow (specialized) diet will include only a few types.

If a predator is too specialized, it will spend all of its

time searching. If the predator is too generalized, then

it will pursue too much unpro�table prey.
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The conventional diet model (Stephens & Krebs,

1986) addresses these trade-offs. The diet model as-

sumes (strongly) that

� prey are encountered at a constant rate as a
function of search time;

� search and handling (which includes pursuit)
are mutually exclusive processes;

� the forager has perfect knowledge about the
prey and the environment with respect to prev-
alence, energetic value, and search and han-
dling costs; and

� information about prey is assessed perfectly and
used in a decision instantaneously when prey
are encountered.

The details and derivation of the conventional diet

model are presented in the appendix. The model

assumes that prey can be classi�ed by the forager into

i … 1, 2, . . . , n types and that the forager knows in-

formation concerning the pro�tability and preva-

lence each kind of prey. The average time between

�nding prey of type i is tBi. The rate of encountering

prey of type i is assumed to be a random (Poisson)

process. So prey will be encountered at a rate

li … 1=tBi:

Each kind of prey, i, is characterized by the average

amount of energy, gi, that could be gained by pur-

suing, capturing, and consuming the prey. The av-

erage time cost, tWi, of pursuit, capture, and eating is

usually referred to as the handling cost associated

with the prey type. The pro�tabilities of each type of

prey, pi, are de�ned as the energetic value of the prey

type divided by the handling time cost of pursuit,

capture, and consumption of the prey,

pi … gi

tWi
: (2:17)

The diet of a forager can be characterized as the set of

available prey types that the organism chooses to

pursue when encountered. Let D be a set represent-

ing the diet of a forager; for example, D … {1, 2, 3}

represents a diet consisting of prey types 1, 2, and 3.

The average rate of gain, R, yielded by such a diet

would be given by another variation on Holling�s

Disk Equation (equation 2.5),

R …
X

i2D
ligi

1 þ
X

i2D
litWi

: (2:18)

Optimal Diet Selection Algorithm

If we assume that the time costs needed to recognize

prey are effectively zero, then an optimal diet can be

constructed by choosing prey types in an all-or-none

manner according to their pro�tabilities (this is known

as the zero-one rule; see the appendix). In general

(Stephens & Krebs, 1986), the following algorithm

can be used to determine the rate-maximizing subset

of the n prey types that should be selected:

� Rank the prey types by their pro�tability, pi …
gi/tWi. To simplify our presentation, we and
let the index i be ordered such that p1 >
p2 > � � � > p n.

� Add prey types to the diet in order of increasing
rank (i.e., decreasing pro�tability) until the rate
of gain for a diet of the top k prey types is greater
than pro�tability of the k þ 1st prey type,

R(k) …
Xk

i … 1
ligi

1 þ
Xk

i … 1
litWi

>
gk þ 1

tWk þ 1
: (2:19)

� The left side of the inequality in equation 2.19
concerns the rate of gain obtained by the diet of
the k highest pro�tability prey types, computed
according to equation 2.18. The right side of
the inequality concerns the pro�tability of the
k þ 1st prey type.

Conceptually, one may imagine an iterative pro-

cess that considers successive diets of the prey types.

Initially, the diet, D, contains just the most pro�table

type, D … {1}; the next diet considered contains the

two most pro�table types, D … {1, 2}; and so on. At

each stage, the process tests the rate of gain R(k) for the

current diet containing D … {1, 2, . . . , k} types against

the pro�tability of the next type pk þ 1. As long as

the gain of the diet is less than the pro�tability of the

next prey type, R(k)�pk þ 1, then the process should

go on to consider the next diet D … {1, 2, . . . , k þ 1}.

Otherwise, the iterative process terminates, and one

has obtained the optimal diet. Adding the next prey

type would decrease the rate of gain for the diet.

To illustrate this graphically, consider �gure 2.9,

which presents a set of hypothetical prey types having
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an exponential distribution of pro�tabilities indicated

by pk. Assume that these prey types are all encoun-

tered at an equal rate of lk … 1. Figure 2.9 also

presents R(k) calculated according to equation 2.18,

for diets including prey types up to and including

each type k. One can see that R(k) increases at �rst as

the diet is expanded up to an optimum diet con-

taining the top four prey types and then decreases as

additional items are included in the diet. The opti-

mum, R*, occurs just prior to the point where R(k)

crosses pk. Increasing the pro�tability of higher

ranked items tends to change the threshold, yielding

fewer types of items in the diet. A similar diet-

narrowing effect is obtained by increasing the prev-

alence (l) of higher ranked prey.

Principles of Diet Selection

The diet selection algorithm suggests the following:

Principle of Lost Opportunity. Intuitively, the infor-
mation diet model states that a class of items is
predicted to be ignored if the pro�tability, pi, for
those items is less than the expected rate of gain, R,
of continuing search for other types of items. This is
because the gain obtained by processing items of
that low-pro�tability prey type is less than the lost
opportunity to get higher pro�tability types of items.

Independence of Inclusion from Encounter Rate. An
implication of the diet selection algorithm (Ste-
phens & Krebs, 1986) is that the decision to pursue
a class of prey is independent of its prevalence. The
decision to include lower ranked prey in a diet
is solely dependent on their pro�tability and not
on the rate at which they are encountered, li.
However, the inclusion of a class of prey is sensitive
to changes in the prevalence of more pro�table
classes of prey. This can be seen by examination of
equation 2.19, where li appears on the left side of
the inequality but not the right side. Generally,
increases in the prevalence of higher pro�tability
prey (or equivalently increases in their encounter
rates) make it optimal to be more selective.

Conventional models of optimal foraging theory�the

patch model and the diet model�have generally pro-

ven to be productive and resilient in addressing food-

foraging behaviors studied in the �eld and the lab

(Stephens, 1990). However, these models do not take

into account mechanisms that organisms actually use

to achieve adaptive foraging strategies. The conven-

tional models also make the strong assumption that the

forager has perfect ��global�� information concerning the

environment. Moreover, the models are static rather

than dynamic (dependent on changing state or time).

Food Foraging Illustrations

Returning to our hypothetical hawk, imagine that the

hawk lives in an environment that hosts two kinds of

rabbits (see table 2.1): (1) big rabbits that are scarce,

rich in calories, and take a half hour to chase and

consume and (2) small rabbits that are plentiful but low

in calories, although quickly chased and consumed.5

Should the hawk pursue just the big rabbits, or should

the hawk include both kinds of rabbits in its diet?

From table 2.1, we can calculate the rate of return

for the narrow diet that includes only big rabbits:

RBig … gBig lBig

1 þ lBig tBig

… 1:85 kCal=sec

(2:20)

A broad diet that includes both kinds of rabbits turns

out to have a lower rate of return:

RBoth … gBiglBig þ gSmalllSmall

1 þ lBigtBig þ lSmalltSmall

… 1:15 kCal=sec

(2:21)
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�gure 2.9 A hypothetical example of the relation-
ship between pro�tability (pk) and rate of gain [R(k)]
for diets including prey types 1, 2, . . . k. In this
illustration, it is assumed that when the prey types are
ranked according to pro�tability, the pro�tabilities,
pk, decrease exponentially. The rate of gain, R(k),
increases to an optimum R* as the diet is expanded to
include the four highest pro�tability prey types and
decreases if lower ranked types are included.
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The hawk should spend its time foraging just for big

rabbits because they are so pro�table (as indicated by

g/tW). Pursuing the small rabbits would incur an op-

portunity cost that is greater than the gains provided

by the small rabbits.

As an exercise, substitute various values for lSmall

(the rate of encounter with small rabbits) in equation

2.21, ranging from very low (e.g., lSmall … 1/3600 sec)

to very high (e.g., lSmall … 1/sec). This will illustrate

the principle that inclusion in the diet is independent

of the encounter rate. Below I describe as an analogy

the junk mail, received by virtually everyone, that has

no value whatsoever (i.e., there is always something

better to do than read junk mail). No matter how

much the rate of delivery of junk increases, it would

remain unpro�table to read a single piece of it.

Figure 2.10 presents data that are generally con-

sistent with the predictions of the diet model. Figure

2.10 shows the diet of shore crabs when offered the

choice of mussels of different sizes when each type was

equally prevalent (Elner & Hughes, 1978). The crabs

choose the most pro�tably sized mussels. Human

hunter-gatherers have complex diets that appear to

conform to the conventional diet model. For instance,

the men of the Ache· in Paraguay choose food types

that are above the average rate of return for the envi-

ronment (Kaplan & Hill, 1992).

Information Foraging Examples

The diet model developed in optimal foraging the-

ory is the basis for aspects of information foraging mod-

els developed in chapter 6, where it will be used to

predict how people select subcollections of docu-

ments based on the expected pro�tability of the

subcollections in terms of the rate of extracting rel-

evant documents per unit cost of interaction time.

The general analogy is that one may think of an in-

formation forager as an information predator whose

aim is to select information prey so as to maximize

the rate of gain of information relevant to their task.

These information prey might be relevant documents

or document collections. Different sources will differ

in their access costs or prevalences, and they will

differ in pro�tability. The pro�tability of an infor-

mation source may be de�ned as the value of infor-

mation gained per unit cost of processing the source.

For instance, physical and electronic mail may come

from a variety of sources that have different arrival

rates and pro�tabilities. Clearly, low-pro�tability junk

mail should be ignored if it would cost the reader
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�gure 2.10 Shore crabs tend to choose the mussel
that has the highest pro�tability: (a) the pro�tability
curve for mussels as a function of their size is mirrored
by (b) the histogram of the size of mussel consumed
by shore crabs when presented at equal prevalence in
the environment (Elner & Hughes, 1978).

table 2.1 Hypothetical parameters for a hawk faced
with a diet choice problem.

ParametersRabbit
Type l g tW p … g/tW

Big 1/3600 sec 10,000 kCal 1800 sec 5.56 kCal/sec

Small 100/3600 sec 100 kCal 120 sec 0.83 kCal/sec
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the opportunity of processing more pro�table mail.

We might also expect the diet of an information

forager to broaden or narrow depending on the prev-

alences and pro�tabilities of information sources.

The general principles of opportunity cost and

independence of inclusion from encounter rate can

be illustrated by a hypothetical information foraging

example that may resonate with many people who

use e-mail. Suppose we observe a woman who runs a

small business that she conducts using e-mail. As-

sume that each e-mail from a prospective customer is

an order for the businesswoman�s product (let us as-

sume that all other aspects of customer service are

handled by others) and that she makes go … $10 pro�t

on each order. The businesswoman also receives

unsolicited e-mail (junk mail or spam) that occasion-

ally offers some service or product savings of relevance

to the woman. Suppose that, on average, 1/100 spam

e-mails offers something that saves the woman $10

(gs … $10/100 … $0.10), and she receives one spam

e-mail a minute (her encounter rate with spam is

ls … 1/minute). Suppose that when she �rst started

her business, the businesswoman received two orders

during an 8-hour day (her encounter rate was lo …
1/240 orders per minute), but now it has improved to

one order per hour (lo … 1/60 orders per minute).

Assume that it takes one minute to read and process

an e-mail (h0 … hs … 1). The analysis in table 2.2

suggests that when the order rate is low (lo … 1/240),

the woman should read both orders and spam, but

when the rate of the more pro�table order e-mails

increases (to lo … 1/60), her information diet should

narrow to processing just the orders. With the order

rate high at lo … 1/60, one should ignore spam re-

gardless of its prevalence (the value of ls). In general,

as the prevalence of pro�table information increases,

one should expect a narrowing of the information

diet. For the optimal forager who has decided to ig-

nore spam, she should do so regardless of increases in

its volume.

Discussion

Optimal foraging theory has been applied with con-

siderable success in the �eld of behavioral ecology

(Stephens, 1990; Stephens & Krebs, 1986) and cul-

tural anthropology (Winterhalder & Smith, 1992a).

Historically, the �rst proposal of an optimal foraging

model appeared in MacArthur and Pianka�s (1966)

model of how the diet of species might change in

reaction to invasion by competitor species, which

made explicit predictions about how diets would

change depending on prey availability. By the 1980s,

optimal foraging theory had been used to bring or-

derly predictions to the study of behavior in hunter-

gatherer societies (Smith, 1981, 1987). As noted in

chapter 1, optimal foraging theory has arisen from the

use of methodological adaptationism. This paradigm,

including optimal foraging theory, came under a

�urry of attacks precipitated by a paper by Gould and

Lewontin (1979), which caused the �eld to become

more rigorous in its methodology and more careful

about its philosophy (Mayr, 1983, 1988).6 While the

behavior of real animals and real people often departs

from that of the optimal forager, the theory has been

very productive in generating useful predictions.

Departures from optimality often reveal hidden con-

straints or other important aspects of the decision

problem and environment facing the forager. Once

these are revealed, they can feed back into the rational

analysis of the forager.

The development of the information foraging

models that are presented in the chapters that follow

often emerged from considering an elementary opti-

mal foraging theory model and adding detail where

necessary. There are certainly differences between

food and information, the most notable being that

information can be copied, and the same content

viewed twice often is not informative the second time

around. But it is the nature of metaphors and anal-

ogies that they are productive, but not completely

equivalent.

table 2.2 Hypothetical rates of return on the e-mail
diets of a hypothetical information worker at two dif-
ferent rates of encounter of orders in the e-mail

Rate of Return ($/min)

Order
Encounter Rate

Orders Only
lcgo

1 þ loho

Orders þ Spam
logo þ lsgs

1 þ loho þ lshs

Low (lo … 1/240) 0.041 0.071

High (lo … 1/60) 0.164 0.132

When orders are low, the worker should process both orders and
spam. When the orders are high, the worker should ignore spam.
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APPENDIX: PATCH RESIDENCE TIME

AND DIET MODELS

Patch Residence Time Model

For the patch model, Holling�s Disk Equation (equa-

tion 2.5) is instantiated (Stephens & Krebs, 1986) as

equation 2.6. Assume that patches of type i are en-

countered with a rate li as a linear function of the

total between-patch foraging time, TB. Now imagine

that the forager can decide to set a policy for how

much time, tWi, to spend within each type of patch.

The total gain could be represented as

G …
X

P

i…1

liTBgi(tWi)

… TB

X

P

i…1

ligi(tWi):

(2:A:1)

Likewise, the total amount of time spent within pat-

ches could be represented as

TW …
X

P

i … 1

liTBtWi

… TB

X

P

i … 1

litWi:

(2:A:2)

The overall average rate of gain will be

R … G

TB þ TW

…
TB

XP

i … 1
ligi(tWi)

TB þ TB

XP

i … 1
litWi

…
XP

i … 1
ligi(tWi)

1 þ
XP

i … 1
litWi

:

: (2:A:3)

Equation 2.A.3 is presented as equation 2.6 in the

text as the conventional patch model.

The task is to determine the optimal vector of

collection residence times (tW1, tW2, . . . , tWP) for a set

of patches, r … {1, 2, . . . , i, . . . P}, that maximizes the

rate of gain R. To differentiate R in equation 2.A.3

with respect to an arbitrary tWi, we �rst get

R … ligi(twi) þ ki

ci þ litWi
, (2:A:4)

where ki is the sum of all terms in the numerator of

equation 2.A.3 not involving tWi,

ki …
X

j2r �fig
gj(tWj),

and ci is the sum of all terms in the denominator of

equation 2.A.3 not involving tWi,

ci … 1 þ
X

j2r �fig
ljtWj:

So, for a given tWi, we get

@R

@twi
… lig0

i(twi)[litWi þ ci]�li[ligi(tWi) þ ki]

(litWi þ ci)
2

:

(2:A:5)

R is maximized when @R/@tWi … 0 (Charnov, 1976),

and so

g0
i(twi)[litwi þ ci]� [ligi(twi) þ ki] … 0, (2:A:6)

table 2.A.1 Notation used in conventional infor-
mation foraging models.

Notation De�nition

R Rate of gain of information value per unit
time cost

G Total information value gained
TB Total time spent in between-patch foraging
TW Total time spent in within-patch foraging
G Average information value gained per item
gi Average information value gained per item

of type i
G(tW) Cumulative value gained in information

patches as a function of time tW
gi(tWi) Cumulative value gained in information

patches of type i as a function of time tWi

tB Average time cost for between-patch fora-
ging

tW Average time cost for within-patch foraging
l Average rate of encountering information

patches
tBi Time spent between patches of type i
tWi Time spent foraging within patches of type i
li Average rate of encountering information

patches of type i
pi Pro�tability of item type i
pi Probability of pursuing items of type i (diet

decision model)
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which becomes

g0
i(twi) … ligi(twi) þ ki

litwi þ ci
, (2:A:7)

so the right-hand side of equation 2.A.4 (average rate

of gain) is the same as the right-hand side of equa-

tion 2.A.7 (instantaneous rate of gain when the av-

erage rate of gain is maximized),

g0
i(twi) … R: (2:A:8)

If we replace R with a function R(tW1, tW2, . . . ,

tWi, . . . , tP), the full vector of rate maximizing tWi

values, (̂ttw1, t̂tw2, . . . , t̂twp), must ful�ll the condition

speci�ed by

g0
1 (̂ttW1) … R(̂ttw1, t̂tw2, . . . , t̂twP)

g0
2 (̂ttW2) … R(̂ttw1, t̂tw2, . . . , t̂twP)

..

.

g0
p (̂ttWP) … R(̂ttw1, t̂tw2, . . . , t̂twP)

(2:9)

This is the formal condition (Charnov, 1976) of

Charnov�s Marginal Value Theorem: Long-term rate

of gain is maximized by choosing patch residence

times so that the marginal value (instantaneous rate)

of the gain at the time of leaving each patch equals

the long-term average rate across all patches.

Diet Model

Following Stephens and Krebs (1986), we assume that

the items encountered can be classi�ed into n types.

The average rate of gain R can be represented as

R …
Xn

i … 1
piligi

1 þ
Xn

i … 1
pilitWi

, (2:A:10)

where, for each item type i, li is the encounter rate

while searching, tWi is the expected processing time

for each item type, gi is the expected net currency

gain, and pi is the probability that items of type i

should be pursued (the decision variable to be set by

the optimization analysis). In the case of food forag-

ing, equation 2.A.10 might be applied under the as-

sumption that the modeled organism partitions the

space of the observed feature combinations exhibited

by its potential prey into discrete categories, i … 1,

2, . . . n. One may also think of equation 2.A.10 as

being applicable when an organism can predict (rec-

ognize) the net gain, processing time, and encounter

rate for an encountered prey. To maximize with re-

spect to any given pi, we differentiate

R … piligi þ ki

ci þ pilitWi
, (2:A:11)

where ki is the sum of all terms not involving pi in the

numerator of equation 2.A.10 and ci is the sum of all

terms in the denominator not involving pi, and we

assume that the gain, processing time, and encounter

rate variables are not dependent on pi. Differentiating

equation 2.A.11 obtains

@R

@pi
… ligici �litWiki

(ci þ pilitWi)
2

: (2:A:12)

Zero-One Rule

Inspection of equation 2.A.12 shows that R is maxi-

mized by either pi … 1 or pi … 0 (Stephens & Krebs,

1986). Note that this occurs under the constraint that

the time it takes to recognize an item is assumed to be

zero. This is known as the Zero-One Rule, which

simply states that the optimal diet will be one in which

items of a given pro�tability level are chosen in an all-

or-none fashion, where pro�tability, pi, is de�ned as

pi … gi

tWi
: (2:A:13)

The decision to set pi … 1 or pi … 0 is reduced to the

following rules, which determine the numerator of

equation 2.A.12:

Set pi … 0 if gi/tWi < ki/ci (the pro�tability for i is
less than that for everything else).

Set pi … 1 if gi/tWi < ki/ci (the pro�tability for i is
greater than that for everything else).

For the n item types, there are n such inequalities.

This provides the basis for the diet optimization al-

gorithm presented in the main text.
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Notes

1. More strongly stated, the implicit assumption in
optimal foraging models is usually that �tness is an in-
creasing linear function of energy, whereas it is more
likely that there is a saturating relationship (i.e., at some
point, further increases in energy intake have little or no
effect on �tness).

2. Note that this assumption does not always apply to
real situations. For instance, web-weaving spiders can
capture new patches of food (e.g., insects) in their webs
while engaged in the activities of consuming a patch of
food, and this requires some elaborations to the con-
ventional patch model (McNair, 1983). Pirolli and Card
(1998) apply such a model to an information browser
that has multithreaded processing.

3. In his seminal work, Holling (1959) developed a
model by studying a blindfolded research assistant who
was given the task of picking up (foraging for) randomly
scattered sandpaper disks�hence the name ��disk equa-
tion.�� Holling validated the model later by observing
three species of small mammals preying upon saw�y
cocoons in controlled experiments.

4. Figure 2.6 also uses the convention in optimal
foraging theory in which the average between-patch time
is plotted on the horizontal axis starting at the origin and
moving to the left, and within-patch time is plotted on
the horizontal axis moving to the right. This differs from
preceding �gures in this book.

5. Wild rabbit has about 500 kCal per pound of meat.
6. This debate is part of a broader one incited by the

emergence of sociobiology in the 1970s, which contin-
ues to reverberate in the behavioral and social sciences.
For a fascinating rendition of this ��opera,�� see Seger-
strale (2000).
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3

The Ecology of Information Foraging

on the World Wide Web

In this chapter, I present some basic analyses of in-

formation foraging behavior on the World Wide Web.

This analysis has its foundations in Newell and Si-

mon�s (1972) methodology for understanding com-

plex human information processing, elaborated with

an ecological approach echoing the psychology of

Egon Brunswik (1952; Cooksey, 2001). This chapter

presents an information processing analysis that fo-

cuses simultaneously on understanding the foraging

environment posed by the Web and on the human

forager whose goal-driven behavior is fashioned by the

structure and constraints of that environment. The

heart of this analysis deals with laboratory data from

participants working on tasks that are representative of

those faced by average users in everyday life. The re-

sults illustrate how the structure of the Web environ-

ment and the goals and heuristics of human infor-

mation foragers mutually shape foraging behavior.

This chapter is the �rst of three that deal with

information foraging behavior on the Web. The focus

of this chapter is on a general analysis of the envi-

ronment in which the behavior occurs, as well as

some general observations about Web foraging be-

havior. Chapter 4 provides rational analyses of the

problems posed by the Web environment, as well as a

theory of information scent that concerns how people

make navigation decisions. Chapter 5 describes de-

tailed computational cognitive models of users for-

aging on the Web. This sequence of chapters traces

through the rational analysis methodology, in which

the theorist asks (a) what environmental problem is

solved, (b) why a given behavioral strategy is a good

solution to the problem, and (c) how that solution

is realized by cognitive mechanisms. The products

of this approach include (a) characterizations of the

relevant goals and environment, (b) mathematical

rational choice models (e.g., optimization models) of

idealized behavioral strategies for achieving those

goals in that environment, and (c) computational cog-

nitive models.

As noted in chapter 1, we may think of the in-

formation foraging environment really as an ecology
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of two interrelated environments: (a) the task envi-

ronment that is shaped by the goals of the agent, and

(b) the information environment that structures the

way the agent can access and process information

content into useful knowledge. I begin the discussion

with the information environment of the Web and

then present the tasks people perform within that en-

vironment.

Aspects of the Structure of the Web

Foraging on the Web depends on several key types of

virtual locomotion, including navigation through

hypermedia links, the use of search engines, the di-

rect typing of URLs (uniform resource locators), and

use of browser navigation buttons (e.g., history). For-

aging through these structures is shaped by the ar-

rangement of content and navigation cues relevant to

users� information needs, so it is worth reviewing

some structural properties of the Web before delving

into the laboratory study of information foraging on

the Web.

Hierarchical Patch Structure of the Web

In keeping with the literature on foraging theory, I

refer to groupings of information generically as in-

formation patches�the idea being that it is easier to

navigate and process information that resides within

the same patch than to navigate and process infor-

mation across patches. The term ��patch�� suggests a

locality in which within-patch distances are smaller

than between-patch distances. As eloquently pre-

sented in Simon�s (1962) seminal work on the ar-

chitecture of complexity, information systems tend to

evolve toward hierarchical organizations. In part, this

has to do with robustness (failures in a subhierarchy

part need not affect the whole), but it also has to do

with ef�ciency. Ef�cient hierarchically arranged in-

formation systems can emerge from decentralized

social processes (Resnikoff, 1989). Empirical studies

of the Web suggest that it is arranged into hierar-

chical patches that have evolved through decentral-

ized social evolutionary processes.

The Web is conceptually and structurally ar-

ranged into hierarchical patches, although there may

be quibbles about exactly how it arranged. The Web

page constitutes a basic information patch on the

Web. Web pages collect together content and a va-

riety of other interactive hypermedia elements such

as links, pull-down menus, and search boxes. Web

pages often have spatial layouts designed to evoke the

perception of different areas related to different kinds

of content or interactive activities. For instance, a

Web page may have a banner area for advertisements,

a site map area for navigation, and several areas each

containing content about some topic. Web sites typ-

ically provide access to Web pages as well as other

information technologies (e.g., proprietary databases

or consumer services) about some related set of topics

or purposes. URLs used to identify and retrieve Web

content at a Web site also tend to be structured hi-

erarchically. Large portions of the Web are accessed

through Web portals that act as central hubs for for-

aging the Web. These may group links to the Web

according to semantic relatedness. Some Web por-

tals, such as Yahoo! or the dmoz Open Directory

Project, may contain hundreds of millions of links

hierarchically arranged by hundreds of thousands of

semantic categories. Web portals such as Google

may also use search engine technology to index the

Web and dynamically generate links to Web content

relevant to a user�s query, typically delivered to the

user in the form of a Web page. On the Web, lower

level information patches, such as Web pages and

search result pages, are collected into higher level

information patches, such as Web sites and Web

portals.

Empirical studies of the link structure of the Web

reveal a patchy structure. Web sites tend to have

more links to other pages within the same Web site

than links to other Web sites. Eiron and McCurley

(2003) studied the hierarchical arrangement of the

Web in an analysis of 616 million pages from 12.5

million Web sites sampled from a crawl by a com-

puter program of the Web conducted in 2002. Eiron

and McCurley divided a sample of 534,894 links into

Intradirectory links (as indicated by the URL; see

above), Up and Down links (those that go up or down

the directory hierarchy), Across links (links within the

host Web site that do not belong to the previous ca-

tegories), and External links that go outside the

Web site host. The distribution of links was 41.1%

Intradirectory, 11.2% Up, 3.9% Down, 18.7% Across,

and 25.0% External (this analysis ignored 0.9% of

links that were self-referential). In other words, 75.0%

of the links from Web pages go to other Web pages

within the same Web site, and 54.8% of the within-

site links go to Web pages in the same directory.

ECOLOGY OF WEB FORAGING 49



Eiron and McCurley (2003) found a strong cor-

relation between the tree distance measured on the

directory structure of a Web site (as indicated by the

URL structure) and the probability of occurrence of a

hyperlink at that distance. In particular, the proba-

bility of a hyperlink existing between two Web pages

decreases exponentially with their tree distance in the

directory structure of a Web site host. Eiron and

McCurley suggested that this localization of hyper-

links re�ects the social organizations surrounding the

authorship process. For instance, the organization

of groups within departments, within schools, and

within universities might be re�ected in a Web site

directory structure. Authors will tend to link to pages

written by authors they know, and the likelihood of

interauthor familiarity will decrease with tree distance

in the hierarchy of the social organization, which is

often re�ected in the Web site directory structure.

Regardless of the ultimate evolutionary causes, it is

clear that the Web is organized into a hierarchy of

patches.

Hubs and Authorities

The link structure of the Web has evolved without

any global centralized design. One pattern of interest

is the arrangement of connections on the Web,

which bears similarity to the structure of scienti�c

literatures. Bibliometrics is the application of quan-

titative methods in the library sciences to understand

the structure and dynamics of information sources

and products (Egghe & Rousseau, 1990). One domain

of interest for this �eld is the analysis of scienti�c

literatures using quantitative citation analysis (Gar-

�eld, 1979). Scienti�c publications typically cite pre-

vious related works (Merton, 1968). One may think

of the literature as a large connected network, with

each published paper as a node, with links to other

nodes in the network representing citations to previ-

ously published papers. Generally, important review

papers in a scienti�c �eld will have a higher than

average number of citation links to other papers. If

one wants to learn about some topic, it is useful to

�nd such a review paper.1 Any assistant professor

worried about getting tenure will also tell you that

papers that are heavily cited by other papers are

considered important. In terms of the network char-

acterization of the citation structure of science, com-

prehensive review papers will appear as nodes with

many links emanating from them, whereas important

papers will appear as nodes with many inbound links

(inlinks) from citing papers. Similar kinds of struc-

tures appear when the Web is represented as a net-

work, and these structures may be similarly inter-

preted to indicate their importance in �nding useful

information. Here, I use the terms ��hubs�� (when

discussing the outbound link [outlink] structure of

nodes) and ��authorities�� (when discussing the inlink

structure of nodes) to refer to these structures on the

Web, in keeping with terms used by Kleinberg

(1999).

In a networked system, a hub refers to a node that

connects to one or more other nodes, and hub size

refers to the number of connections emanating from

a hub. A Web page with one or more outlinks may be

considered a hub in the Web, and hub size would

refer to the number of outlinks. Evolutionary social

processes have led to a connection pattern on the

Web that resembles the network architecture of many

other complex systems such as the cellular metabolic

system or networks of social relations, in which a

small number of hubs have an extremely large hub

size (Baraba·si, 2002; Baraba·si & Albert, 1999; Bar-

aba·si, Albert, & Jeong, 2000; Baraba·si & Bonabeau,

2003). The architecture of such networks is such that

the proportion of nodes having a hub size k decays as

k�g, g >1, which is known as an inverse power law

distribution. Speci�cally, the discrete probability of

obtaining a node of size k is

P(k) … Ck�g, (3:1)

where C is a constant. This power law distribution for

hub sizes on the Web (Baraba·si et al., 2000) appears

linear when plotted in log�log coordinates, as illus-

trated in �gure 3.1a. Power law distributions are

characterized as being scale-free, because the power-

law form appears at all length scales and for any ar-

bitrary subrange of k, quite unlike the more familiar

Gaussian distribution. Also unlike the Gaussian, the

mean of a power law distribution is not the most

typical, and in a typical random sample, most of the

instances will be less than the mean.

This scale-free hub pattern on the Web has impli-

cations for a forager seeking to navigate the link

structure from one page to another. In general, the

link distance (or degrees of separation in the graph-

theoretic sense) to some target page will be smaller

from a randomly selected larger hub than from a ran-

dom smaller hub. Consequently, a forager concerned
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with navigation ef�ciency might adopt the heuristic of

seeking larger hubs as a passageway to target content.

This seems to be one reason that people often start their

Web foraging sessions by going to a large Web portal.

Hubs are important because they reduce the cost

structure of search. Of course, as one acquires knowl-

edge about the location of Web content relevant to

speci�c tasks, one would use that knowledge to go di-

rectly to those locations.

The distribution of inlinks to Web pages (Baraba·si

et al., 2000) also conforms to a scale-free power law

(�gure 3.1b). A node representing a Web page with

one or more inlinks is called an authority, and its

authoritativeness is the number of inlinks from other

Web pages. Figure 3.1b presents the proportion of

Web pages according to the number of inlinks that

connect to those pages. As in �gure 3.1a, the distri-

bution in �gure 3.1b appears linear when plotted in

log�log coordinates, indicating a scale-free power law

distribution. Authoritativeness (number of inlinks) is

a good heuristic for judging the relevance of a Web

page because inlinks indicate that someone, some-

where, once attended to a particular page and made

the judgment that it was worthwhile to create a link

for other people to follow. Each link is a kind of

implicit recommendation by someone (although the

purpose behind that recommendation certainly can

range from social benevolence to outright scamming

self-interest). The use of authoritativeness as a heu-

ristic for computing the relevance of Web pages is

employed in several retrieval algorithms, most nota-

bly the PageRank algorithm that underlies the Google

search engine (Brin & Page, 1998).

The distribution in �gure 3.1b implies that a

forager that randomly walks about the link structure

of the Web would most frequently end up at Web

pages with high authoritativeness. Pages with high

authoritativeness would be attractors for foragers op-

erating by blind link choice, but it is also the case that

foragers knowingly choose links that seem to be fre-

quently recommended. Authoritativeness and hub

size have a weak but signi�cant correlation, which

might be the result of socially constructed recom-

mendations for important hubs. Data from a 1997

crawl of the Web by Alexa.com analyzed extensively

in Pitkow (1997) and Adamic (2001) show a Spear-

man correlation of r … 0.23 (for N … 259,795 Web

sites) between the rank of a Web site�s hub size and

its authoritativeness.2 Evolutionary social processes

have tended to create a networked environment that

contains attractors (authorities) that tend to draw

foragers to socially recommended information and to

hubs that are likely to reduce the cost of effort of

�nding important information.

Topical Patches and Gradients of Relevance

Users often surf the Web seeking content related to

some topic of interest, and the Web tends to be orga-

nized into topical localities. Davison (2000) ana-

lyzed the topical locality of the Web using 200,998

Web pages sampled from approximately 3 million

pages crawled in 1999. Davison assessed the topical

similarity of pairs of Web pages from this sample that

were Linked (had a link between them), Siblings

(linked from the same parent page), and Random

(selected at random). The similarities were computed

by a normalized correlation3 or cosine measure, r,

on the vectors of the word frequencies in a pair of

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

Number of outbound links (k)

P
ro

b
a
b
ili

ty
 P

(k
)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

Number of outbound links (k)

P
ro

b
a
b
ili

ty
 P

(k
)

(a)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

Number of inbound links (k)

P
ro

b
a
b
lit

y
P

(k
)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

Number of inbound links (k)

P
ro

b
a
b
lit

y
P

(k
)

(b)

�gure 3.1 (a) The distribution of hub sizes (number
of outbound links), k, of pages on the Web is distributed
as P(k) 	 k �2.45. (b) The distribution of authoritative-
ness (number of inbound links), k, of pages on the Web
is distributed as P(k)	k �2.1. Based on data presented
in Baraba·si et al. (2000).
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documents (Manning & Schuetze, 1999).4 The

Linked pages showed greater textual similarity (r …
.23) than did Sibling pages (r … .20), but both were

substantially more similar than were Random pairs of

pages (r … .02).

Figure 3.2 is a concrete example of how topical

similarity between pages diminishes with the link dis-

tance between them. To produce �gure 3.2, I used data

collected from the Xerox.com Web site in May 1998

(used for another purpose in Pitkow & Pirolli, 1999),

and I computed the page-to-page content similarities

for all pairs of pages at minimum distances of 1, 2, 3, 4,

and 5 degrees of separation (link distance). The simi-

larities were computed by comparing normalized cor-

relations of vectors of the word frequencies in a pair of

documents (Manning & Schuetze, 1999). Figure 3.2

shows that the similarity of the content of pages dimin-

ishes rapidly as a function of shortest link distance

separating them. Figure 3.2 suggests that the Web has

topically related information patches.

Of course, what users actually see as ��links�� on

the Web are snippets of text and graphics. Davison

(2000) compared elaborated anchor text (the anchor

plus additional surrounding text, having a mean of

11.02 terms) to a paired document that was either

Linked (the page linked to the anchor) or Random (a

random page). The normalized correlation (cosine)

similarities were Linked r … .16 and Random r&0.

Davison�s analysis of the correlation of proximal cues

to distal content con�rms our intuition that the cues

have ecological validity.

Cues associated with links (which are character-

ized as information scent in chapter 4) are expected

to be useful to the information forager in at least two

ways. First, link cues provide a way of judging the

utility of following alternative paths (i.e., choosing a

link from a set of links presented on a Web page).

Second, link cues provide a way of detecting that one

is moving out of a patch of topical relevance (i.e., by

detecting that the utility of information is dwindling

as in �gure 3.2).

Search Results as Patches with
Diminishing Returns

Many large Web portals, such as Google or Yahoo!,

provide search engines that retrieve documents from

the Web in response to users� queries. The general

goal of these search engines to allow users to enter in

some representation of their information need (typi-

cally as a list of words or phrases) and return a list of

easily scanned representations (e.g., link anchor text, or

bibliographic citations) of documents that are ranked

according to their predicted relevance to the users�

needs. Generally, for a forager scanning down a set of

search results, there are diminishing returns: The

likelihood that a ��more relevant�� document will be

found with more future foraging effort diminishes as a

function of how many result items have already been

scanned. Generally, a Web forager will be interested

in Web search services that frequently give the highest

rankings to the ��most relevant�� items to the user

(ideally, the ��best�� items for any user should always be

ranked number one). In economics terms, such search

engines provide sharply diminishing marginal returns.

Chapter 1 presents an analysis of a hotel Web site

illustrating how one could view search engine results

as information patches with diminishing returns for

foraging. The hotel Web site example focuses on the

relation between price savings and information forg-

ing. One may perform a similar analysis of searching

for the maximum value (as opposed to minimum

price), as might occur in searching for a maximally

relevant document or the best product. I believe that

a similar related analysis applies to the diminishing

returns of foraging for information to understand

some particular topic.

Summary

Empirical analyses suggest that the ecology of the

information forager on the Web is organized in a
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�gure 3.2 The similarity (normalized correlation
of document content) of pairs of Web pages as a
function of the minimum link distances separat-
ing the pairs. Data collected from the Xerox.com
Web site, May 1998.
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hierarchical arrangement of information patches. A

number of hypotheses emerge from these observa-

tions. The patchy structure of the Web might lead to

behavior that is organized around those patches. A

forager might be expected to seek out patches of high

utility and to leave patches when diminishing returns

are detected. The link structure of the Web exhibits

scale-free power law distributions of inlinks (author-

ities) and outlinks (hubs). These regularities might

also be exploited by the forager. Information hubs

might be expected to be preferred because they are

likely to minimize expected costs. Information autho-

rities might be preferred because they are cited by

many people (a property exploited in some search

engines).

This section has focused on structural regularities

in the information environment. The next section

turns to discussion of the ecology of task environ-

ments in which Web foragers operate.

Representative Web Tasks

Brunswik (1952, 1956) developed the method of

representative design for ensuring that experimental

results would be ecologically valid�that results

would generalize from the laboratory to important

tasks in real world. The basic idea behind this method

is to utilize experimental conditions (materials, tasks,

etc.) that re�ect conditions of the world. Others

(notably, Gibson, 1979; Neisser, 1976) have argued

strongly that human psychology is exquisitely adapted

to its environment and, consequently, is best revealed

through the study of tasks and stimuli representatively

sampled from the environment.5 To study how peo-

ple forage for information on the Web, my colleagues

Julie Morrison and Stuart Card and I decided to

perform a survey to collect and analyze real-world

Web tasks. The purpose of this study (reported in part

in Morrison, Pirolli, & Card, 2001) was to develop a

taxonomic analysis of the types of Web tasks people

view as important along with a catalog of concrete

examples. This taxonomy would be the basis for de-

veloping laboratory Web tasks.

To collect descriptions of Web tasks, we inserted a

survey question into the GVU Tenth WWW User

Survey (Kehoe, Pitkow, Sutton, & Aggarwal, 1999)

conducted October through December 1998 by the

Graphics, Visualization, and Usability Center at

the Georgia Institute of Technology (henceforth, the

GVU Survey). From 1994 through 1998, the GVU

Survey collected information from online surveys on

Internet demographics, culture, e-commerce, adver-

tising, user attitudes, and usage patterns. The survey

question (henceforth, the Signi�cance Question) we

used was a variation on those used in the Critical In-

cident Technique:

Please try to recall a recent instance in which you
found important information on the World Wide
Web; information that led to a signi�cant action
or decision. Please describe that incident in en-
ough detail so that we can visualize the situation.

The Critical Incident Technique originated in stud-

ies of aviation psychology conducted during World

War II (Fitts & Jones, 1961), achieved wider recog-

nition with the work of Flanagan (1954), and has

evolved many variations in human factors (Shattuck

& Woods, 1994), cognitive task analysis (Klein, Cal-

derwood, & Macgregor, 1989), usability (Hartson &

Castillo, 1998), and Web use in particular (Choo,

Detlor, & Turnbull, 1998). The key idea in this tech-

nique is to ask users to report a critical incident,

which is an event or task that is a signi�cant indicator

(either positive or negative) of some factor of interest

in the study. The Critical Incident Technique and its

variants provide a way to obtain concrete descriptions

of events or tasks that are identi�ed as critical (im-

portant, signi�cant) by typical people operating in

real-world situations. It is aimed at obtaining not a

random sample of tasks or events (which is a weak,

general method of understanding the world), but ra-

ther a sample of tasks or events that are revealing of

the domain. As noted by Nielsen (2001), the use of

Critical Incident Technique on the Web is also useful

in identifying important value-added tasks for Web

provider and for gaining insights for innovations on

the Web.

Method

Participants in the GVU Survey responded to ques-

tionnaires posted on the Web. Participants were so-

licited through announcements on Internet-related

newsgroups, banners randomly rotated on high-

exposure Web sites, banners randomly rotated through

advertising networks, announcements made to the

Web-surveying mailing list maintained by the GVU

Survey team, and announcements in the general
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media. Participants were offered the chance to win a

$100 prize for doing the survey. The sampling was not

truly random; however, every effort was made to ran-

domly broadcast announcements on highly traf�cked

areas of the Web.6 The results of the GVU Survey

(Kehoe et al., 1999) include detailed demographic

data that can be used to compare the GVU Survey

sample to others.

The Signi�cance Question quoted above was part

of a subsection of the survey on computer, Web, and

Internet use. A total of N … 2,188 people responded

to the Signi�cance Question, whereas N … 3,292 peo-

92 people cumulatively responded to questions in

the computer, Web, and Internet use section. The

highest rate of response was obtained in the demo-

graphic section of the survey: N … 5,022 respondents.

Results

Demographics

Tables 3.1 and 3.2 provide summary demographic

data from the N … 2,188 participants who answered

theSigni�cance Question, along with comparison data

from the Pew Internet and American Life Project�s

report Internet Use by Region in the United States

(Spooner, 2003; henceforth the Pew Survey). The Pew

Survey was based on a daily tracking survey based on

telephone interviews conducted by the Princeton

Survey Research Associates using a random digit

sample of telephone numbers from U.S. telephone

exchanges in 2000, 2001, and 2002. Survey results

from Internet users (N … 10,879) in the Pew Survey

were based on the 2001 samples and had a margin of

sampling error of –1 percentage point.

Table 3.1 presents a comparison of the ages of the

respondents to the Signi�cance Question to the age

distribution of U.S. Internet users estimated by the

Pew Survey. Note that there are minor differences in

the age range de�ned in the two surveys. Ignoring

these minor coding differences, and comparing the

surveys by row in table 3.1, the Signi�cance Question

of the GVU Survey differs by less than 6 percentage

points in all age categories. Table 3.2 presents addi-

tional demographic comparisons between the Sig-

ni�cance Question and the Pew Survey. Table 3.2

suggests that the Signi�cance Question sample is

biased toward white males in comparison to the Pew

Survey estimates of the sex and race of the U.S. In-

ternet population.

Tables 3.3 and 3.4 provide comparisons of the

frequency of Internet or Web use for the Signi�cance

Question and the Pew Survey. It appears that the Sig-

ni�cance Question respondents were more frequent

users of the Web than the U.S. Internet population as

a whole. Table 3.5 provides a comparison of the In-

ternet experience of the Signi�cance Question re-

spondents to the Pew Survey estimates. Table 3.5

suggests that the Signi�cance Question respondents

table 3.1 Comparison of age demographics: sam-
ple answering the Signi�cance Question in the
GVU Survey versus U.S. Internet users in the Pew
Survey.

Signi�cance Question (1999) Pew Survey (2001)

Age Percentage Age Percentage

16�25 16.1% 18�24 17.2%
26�35 28.5% 25�34 23.2%
36�45 26.2% 35�44 25.8%
46�55 20.0% 45�54 19.8%
56�65 6.8% 55�64 9.6%
66þ 2.4% 65þ 4.3%

Note: Signi�cance Question percentages are based on N … 2,148,
which excludes 17 responses in the 11�15 year age group and 23
nonrespondents.

table 3.2 Comparison of sex, race, and income de-
mographics: sample answering the Signi�cance Ques-
tion in the GVU Survey versus U.S. Internet users in
the Pew Survey.

Signi�cance
Question (1999)

Pew Survey
(2001)

Sex
Male 64.8% 49.9%
Female 35.2% 50.1%

Race1

White, non-Hispanic 91.8% 78.0%
Black, non-Hispanic 1.4% 8.2%
Hispanic 1.3% 9.2%
Other 5.5% 4.7%

Income2

Less than $30,000 17.3% 22.7%
$30,000 to $50,000 27.9% 26.8%
$50,000 to $75,000 26.1% 22.5%
More than $75,000 28.7% 28.0%

1Excludes 49 nonrespondents for the Signi�cance Question.
2Excludes 307 nonrespondents for the Signi�cance Question and
16.5% ��Don�t know�� responses for the Pew Survey.
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were more experienced than the U.S. Internet pop-

ulation as a whole. The GVU Survey methodology,

which focuses solicitations around high-volume Web

content, is probably biased toward high-frequency,

more experienced users. This actually suits our goal,

which was to obtain more expert and experienced

assessments of critical Web tasks.

Taxonomic Coding

Two researchers developed the taxonomic coding

scheme for responses to the Signi�cance Question,

based initially on earlier work (Choo et al., 1998).

Over three iterations, the two researchers indepen-

dently coded the samples of N … 100 responses. After

each iteration, the independent codings were com-

pared, discrepancies were discussed, and a revised set

of coding de�nitions were produced for the next

round of coding. The resulting coding scheme was

organized into three taxonomies: Purpose taxonomy,

concerning the respondents� reasons for using the

Web, Method taxonomy, concerning the respondents�

methods for achieving their goals, and Content tax-

onomy, concerning the type of information sought or

used by the respondents. These coding schemes are

illustrated in the appendix. The intercoder reli-

abilities after the third iteration of developing the

coding scheme were a … 0.86 for the Purpose Tax-

onomy, a … 0.94 for the Method Taxonomy, and

a … 0.92 for the Content Taxonomy.

Response Distributions

Tables 3.6�3.8 show the response distributions coded

for the three taxonomies. Table 3.6, which shows the

distribution of signi�cant tasks for the Purpose Tax-

onomy, shows that 25% of the signi�cant tasks in-

volved �nding some fact, document, product, or

software download, and 75% of signi�cant tasks in-

volved some more complex sense-making task such as

making a choice or comparison (51%) or under-

standing some topic area (24%).

Table 3.7, which presents the response distribu-

tion for the Method Taxonomy, shows that critical

events were rarely reported to have occurred during

Web exploration (2%) or everyday monitoring (2%).

To achieve their critical tasks, respondents engaged

in directed �nding of speci�c information items

(25%) or multiple information items (71%).

Table 3.8 shows the distribution of responses

coded in the Content Taxonomy. Foraging for in-

formation related to products accounts for 30% of the

signi�cant tasks reported by respondents. Foraging for

table 3.4 Frequency of accessing Internet in the
Pew Survey.

Frequency Percentage

Several times a day 37.1%
About once a day 25.5%
3�5 days a week 16.2%
1�2 days a week 12.0%
Every few weeks 3.6%
Less often 2.5%
Do not know 3.1%

table 3.5 Time when users started using the Inter-
net.

Signi�cance
Question

Pew
Survey

Less than 6 months 3.7% 7.5%
Less than 1 year 7.1% 14.5%
2 or 3 years ago 32.9% 33.9%
More than 3 years ago 56.3% 44.0%

table 3.6 Distribution of responses to the Sig-
ni�cance Question categorized by the purpose for
using the Web.

Purpose for Using the Web
Percentage of
Respondents

Compare/choose a
product or service 51%

Understand some topic 24%
Find a fact 15%
Find a document 6%
Find a product 2%
Find a download 2%

table 3.3 Frequency of accessing the Web by re-
spondents to the Signi�cance Question.

Home Work School Public Other

Daily 79.5% 60.8% 10.7% 0.8% 1.8%
Weekly 13.8% 6.7% 5.3% 2.0% 4.2%
Monthly 1.1% 1.2% 2.0% 4.3% 7.8%
Less than

once/month 1.9% 1.8% 3.3% 23.7% 30.6%
Never 3.7% 29.5% 78.7% 69.1% 55.6%
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medical information was also a substantial (18%)

proportion of the signi�cant tasks. This is plausible

given the importance most people attach to their own

health and the health of friends and relatives. Another

recent report from the Pew Internet and American

Life Project (Fox & Fallows, 2003) indicates a growing

trend in seeking health-related information among

Internet users. Fox and Fallows (2003) report that

seeking health information is the third most popular

activity on the Internet (80% of adult Internet users

have searched for health content), following e-mail

(93%) and researching a product or service (83%).

Not surprisingly, the tasks people identify in re-

sponse to the Signi�cance Question do not re�ect

what people normally, or typically, do on the Web.

Table 3.9 presents comparisons illustrating this di-

vergence. The Web and Internet usage section of the

GVU Survey contained the question, ��The Web is a

versatile tool. Please indicate how often you have

used the Web for each of the following categories

during the past 6 months.�� Table 3.9 presents re-

sponses to this question from users who used the

Internet on a monthly or more frequent basis along-

side comparable categories from the Signi�cance

Question. Reading electronic news is a typical task; it

rarely is identi�ed as signi�cant.

Summary

Responses to our survey revealed that signi�cant Web

tasks are ones in which users are goal driven. Three

times as many users reported seeking multiple pieces

of information in response to a goal compared to users

seeking a single piece of information. The analysis of

stated purposes showed the importance of larger scale

sense-making activities driving Web foraging, involv-

ing the collection of information, understanding it,

making comparisons, and making decisions. What is

surprising about these results is that the Web is mainly

aimed at helping users �nd speci�c pieces of infor-

mation (e.g., through search engines), and this sug-

gests that there is a latent demand for tools to support

these broader sense-making activities.

A Laboratory Study of Web Users

Detailed protocol analysis studies have often laid the

foundation for the development of models of cogni-

tion in complex, semantically rich domains. A study

initially reported by Card et al. (2001) was conducted

in order to develop a base protocol analysis meth-

odology and to begin to understand behavior and

cognition involved in basic information foraging on

the Web. These analyses are the basis for developing

the SNIF-ACT computational cognitive model pre-

sented in chapter 5.

table 3.9 Comparison of Web/Internet activities
reported by participants and tasks identi�ed as ��sig-
ni�cant.��

Category

Web and
Internet Usage

Activities Section
Signi�cance

Question

Electronic news 26% 1%
Medical information 13% 18%
Product information/

purchase 37% 30%
Financial information 16% 4%
Job search 8% 6%

table 3.8 Distribution of responses to the Sig-
ni�cance Question categorized by the content being
sought.

Content Sought
Percentage of
Respondents

Medical 18%
Computer 17%
People 13%
Business 7%
Travel 7%
Education 6%
Vehicle 6%
Job 6%
Other products 6%
Finance 4%
Download 1%
News 1%
Miscellaneous 8%

table 3.7 Distribution of responses to the Signi�-
cance Question categorized by the method used.

Method of Using
the Web

Percentage of
Respondents

Collect multiple pieces of information 71%
Find particular fact or document 25%
Explore to �nd what is on the Web 2%
Monitor information 2%
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Protocol analysis (Ericsson & Simon, 1984; Newell

& Simon, 1972) is a method (or perhaps a family of

methods) concerned with identifying cognitive states,

their content, and cognitive processes involved in

complex tasks such as problem solving. Seminal

studies using protocol analysis (e.g., Newell & Simon,

1972) required that participants in experiments think

aloud to produce audio recordings while performing a

task. Under the right conditions, thinking aloud is

assumed to provide data concerning the information

that is currently heeded, including goals and the

contents of working memory. Classic verbal protocol

analysis of problem-solving tasks involves transcribing

verbalizations from audio recordings and then cod-

ing the verbalizations to identify states of cognitive

content. In such studies (e.g., Newell & Simon, 1972),

these data are interpreted as re�ecting states of search

through a problem space and states of knowledge. In

our laboratory study of Web behavior, rather than use

audio recordings of think-aloud protocols, we used a

more elaborate set of instrumentation, including

video recordings of participants thinking aloud, logs of

Web browser activity, and an eye tracker.

An earlier study of Web users employing verbal

protocol analysis techniques was reported by Byrne,

John, Wehrle, and Crowe (1999). That study used a

day-in-the-life technique whereby all Web interac-

tions were video recorded for one day for a number of

individuals who thought aloud while using the Web.

The day-in-the-life technique is another method for

obtaining and studying real-world tasks. Our goal was

to bring realistic Web tasks into the laboratory in

order to perform replicable experimental studies in

which the same tasks are performed by many people,

and the same person performs a variety of tasks.

Method

Participants

A total of N … 14 Stanford students participated in

the study. Of those students in study, N … 4 were

subject to detailed analysis.

Materials

Six tasks were developed for the study based on six

responses to the Signi�cance Question. The two tasks

analyzed in detail, and their original survey sources,

are listed in table 3.10.

table 3.10 Tasks analyzed in detail in the laboratory study of Web users.

Task Name Task Source Response to Signi�cance Question

City You are the Chair of Comedic events for Louisiana
State University in Baton Rouge. Your computer
has just crashed and you have lost several
advertisements for upcoming events. You know
that the Second City tour is coming to your
theater in the spring, but you do not know the
precise date. Find the date the comedy troupe is
playing on your campus. Also �nd a photograph
of the group to put on the advertisement.

��Searched and found (using Yahoo Canada) for a
comedy troupe web site to copy their photo
for a poster to be printed and distributed locally
for an upcoming community event.��

Antz After installing a state-of-the-art entertainment
center in your den and replacing the furniture
and carpeting, your redecorating is almost
complete. All that remains to be done is to
purchase a set of movie posters to hang on the
walls. Find a site where you can purchase the
set of four ��Antz�� movie posters depicting
the princess, the hero, the best friend, and
the general.

��Doing a little research on my boyfriend heritage
and the history of the name �Gatling.� I knew his
great-grandfather had invented the Gatling
Gun and the name had been passed down
over generations. In a search engine, the word
�Gatling� appeared as a movie. I looked up the
movie, and went searching to purchase a movie
poster from the movie �The Gatling Gun� It was
not a popular movie, therefore the poster was
dif�cult to �nd. I �nally purchased one from a
poster company (with a website) located in
Boulder, CO. He believes it is the only GG
movie poster around.��
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Apparatus

The instrumentation and data analysis system are

depicted in �gure 3.3. Participants performed their

Web tasks using a standard desktop computer run-

ning Windows 98 and the Internet Explorer Web

browser on a 1024�768 pixel color monitor. As par-

ticipants worked on Web tasks, a video recorder cap-

tured their think-aloud protocols and the computer

screen. A program called WebLogger (Reeder, Pirolli,

& Card, 2001) collected and time-stamped all user

interactions with the Internet Explorer Web browser,

including user keystrokes, mouse movements, scrol-

ling, use of browser buttons, and all pages visited.

WebLogger also collected and time-stamped all sig-

ni�cant browser actions, including the retrieval and

rendering of Web content. An ISCAN RK-426PC eye

tracker system was used to collect user eye movements.

The WebLogger program inserted special event data

into the WebLogger data stream and the ISCAN eye

tracker data stream that permitted the two sources of

data to be synchronized and merged by another pro-

gram called WebEyeMapper (Reeder et al., 2001).

At experiment time, a user worked on a speci�c

task with a Web browser. WebLogger instrumented

the Web browser and recorded all signi�cant events

and display states in an event log. WebLogger events

included browser events related to the state of the

display. Logged browser events included events that

changed the Web page displayed, the portion of the

page displayed, or the position or size of the Internet

Explorer window relative to the screen. WebLogger

also saved the contents of Web pages. This was done

by saving a cache of all pages and associated content

that was viewed by the user. Consequently, all the

application-level content elements of interest as well

as their displayed locations at every point in time

throughout the user�s task were recorded.

At analysis time, the eye-tracking data were map-

ped onto data recorded by WebLogger using Web-

EyeMapper, as shown in �gure 3.3, in order to de-

termine what content was visually focused on by

the user at any given time. This has been called the

points-to-elements mapping problem (Reeder et al.,

2001). The eye tracker recorded points of regard

(PORs) of the eye (the inferred point at which the eye

was gazing). In this particular study, the PORs were

sampled at 1/60th second intervals. PORs were map-

ped onto the content elements that were present at

the same x-y coordinates at each time slice. First,

WebEyeMapper converted PORs from the eye tracker

into �xations (when the eye remains relatively stable

and focused on some location). Then, WebEyeMap-

per initiated a ��playback�� of a browsing session

based on the WebLogger event log and eye �xation

data. WebEyeMapper employed a simulation clock

to coordinate the replay of WebLogger events and eye

�xations. As the simulation clock advanced, WebEye-

Mapper directed Internet Explorer to load the same

Web pages that the user was viewing at the time

indicated by the simulation clock, and directed

Internet Explorer to alter its scroll position, window

WebLogger

Eye tracker

WebEyeMapper

Fixation table

Points of regard

Event log

Interface objects

Cached pagesUser

System

Interface Content

Video Tape
Video

Coded Protocol
Transcription &
Hand Coding

�gure 3.3 Instrumentation and analysis methodology in the laboratory study of Web users.
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position, and window size as the user did at experi-

ment time. In this manner, WebEyeMapper restored

the display state of the browser to the same state,

moment by moment, as the user viewed it at experi-

ment time. WebEyeMapper then took eye �xation

points, aligned them in time with the simulation clock,

aligned them in space with the browser window,

and determined what was rendered in the browser at

the time of each �xation. For each �xation, WebEye-

Mapper wrote to a database the �xation start time and

duration; screen, window, and scroll system coordi-

nates; element �xated; and element text �xated.

Procedure

At the beginning of an experiment session, the eye

tracker was calibrated by having participants �xate on

positions on a 9-point grid that were cued in a ran-

dom order. Participants were given think-aloud in-

structions (Ericsson & Simon, 1984) and asked to

practice thinking aloud on a mental arithmetic prob-

lem and a simple Web task that involved �nding the

home page for PARC. Throughout the think-aloud

procedure, participants were prompted to verbalize if

they were silent for more than a few seconds.

Tasks were presented in random order for each

participant. Each question was displayed on the

computer screen to the left of the Internet Explorer

and remained in view throughout the task. If partic-

ipants did not complete the task within 10 minutes,

they were given a hint in the form of a set of search

terms that would help them �nd the target Web page.

If participants did not complete the task within 15

minutes, they were given the Web site where they

could �nd the target information. Eye tracker cali-

bration was checked between questions.

Results

Detailed protocol analyses were extremely time-con-

suming, and consequently, we decided to focus our

efforts on protocols collected from four participants

working on the Antz and City tasks described in table

3.10. These two tasks were representative of the

complete set of tasks in the sense that they were near

median in task completion time and near median in

task completion time variance. The four participants

were chosen because they had the most intact data on

these two tasks.

The data collected from participants were merged

into a coded Web protocol transcript. Data were

drawn from transcriptions of the video recordings of

the think-aloud protocol and the WebLogger re-

cording of system and user actions with the browser

(including the actual Web pages visited). Several

initial passes were made over a subset of the protocols

to develop a Web Protocol Coding Guide,7 which is

summarized in the appendix. Sample protocols coded

independently by two analysts yielded 91% agree-

ment in the partitioning of the protocol and 93%

agreement in the speci�c codings.

Problem Spaces

Excluding the eye movement data, the participants�

protocols suggest that three problem spaces structure

the bulk of their Web foraging behavior:8

1. A link problem space in which the states are
information patches (typically Web pages) and
the basic operators involve moving from one
patch to another by clicking on links or the
back button

2. A keyword problem space in which the states
are alternative legal queries to search engines
and the operators involve formulating and edit-
ing the search queries

3. A URL problem space in which the states are
legal URLs to be typed into the address bar of a
Web browser and the operators involve formu-
lating and editing the URL strings

The participants� behavior in the Web protocols can

be visualized using a Web behavior graph (WBG;

Card et al., 2001), which is an elaboration of the

problem behavior graphs used in Newell and Simon

(1972). Figure 3.4 presents a schematic explanation

of the WBG graphical representation.

Figure 3.5 presents the WBGs of the four par-

ticipants� data on the Antz and City tasks. Since the

participants� protocols provide sparse data regard-

ing their evaluations of the pages they visited, we had

three independent judges rank the potential utility

(information scent) of each page visited in the eight

Web protocols. Speci�cally, the judges were asked to

rate the relevance of Web pages to the City and Antz

tasks in table 3.10. The judges were presented with

every page visited by participants in the Web study

and were asked to rate the relevance of the pages (a)

after a cursory skimming of the page (initial rating)

and (b) after a more thorough examination of the

page (�nal rating). The ratings were done on a
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4-point scale: No Scent (0), Low Scent (1), Medium

Scent (2), or High Scent (3). The geometric means of

the judges� ratings were taken to reduce the effect of

outlying ratings. These �nal ratings are plotted in the

WBGs in �gure 3.5 on a scale of white (0), light gray

(1), medium gray (2), and dark gray (3).

Following Information Scent

Inspection of �gure 3.5 reveals several phenomena.

The Antz task is more dif�cult than the City task.

Only one-fourth of participants found a solution to

the Antz task, compared with three-quarters of parti-

cipants who found solutions to the City task. The

WBGs for the Antz task show more branches and

backtracking than do the WBGs for the City task,

which is an indication of less informed search. The

participants on the City task moved very directly to

the target information, whereas the participants on the

Antz task followed unproductive paths.

Antz task participants spent more time visiting

search engines and in the keyword problem space.

On the Antz task, participants generated about 3.25

separate sets of search results each, whereas on the

City task, they generated about 1.25 sets of search

results each. One reason for the greater dif�culty of

the Antz task could be the poverty of information

scent of links leading to the desired target informa-

tion. We asked N … 10 judges to rate the information

scent of links on the search results pages visited by

participants in both the Antz and City tasks. The

links were rated on a 4-point scale of Not Relevant

(0), Low Relevant (1), Medium Relevant (2), and

Highly Relevant (3). The geometric mean rating was

computed for each link. The set of all links was split

at the median geometric rating score into equal-sized

sets of High Rating vs. Low Rating links. The link

set was also divided into those that had been Selected

vs. Unselected in the eight Web protocols. A two

(High vs. Low Rating) by two (Link Selected vs.

Web Behavior Graph Representation

State 1 State 3

State 3

State 1

State 2

State 7

State 7

State 3

State 8

State 9

State 4

State 5

State 6

where

State 1

State 2

State 3

State 3

is a node that represents a state

is a distinguished state representing a search result page

Time runs left to right, then top to bottom

represents the application of an operator

indicates a return to a previous state

Keyword Link

surround states within  problem spaces

colors surround states at a common Web site

grey scaling indicates scent of a state/page

�gure 3.4 Schematic explanation of
the components of a Web behavior graph.
See color insert.
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Unselected) contingency table was constructed. A

median split analysis on this contingency table

showed that higher rated links were more likely to

have been the ones selected by the study participant,

w2
ð1Þ… 15.46, p < .0001. The links followed by the

study participants had a lower information scent

average on the Antz task (M … 1.56) than on the City

task (M … 2.44), although the links not followed where

about the same for the Antz task (M … 0.65) and the

City task (M … 0.62).

Dif�culty of foraging on the Web appears to be

related to the quality of information scent cues avail-

able to users. Under conditions of strong information

scent, users move rather directly to the target infor-

mation, as is characteristic of the City task WBGs in

�gure 3.5. When the information scent is weak, there

�gure 3.5 Web behavior graphs for four participants (rows) working on two tasks (columns). See color insert.
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is a more undirected pattern of foraging paths, as

characteristic of the Antz WBGs in �gure 3.5, and a

greater reliance on search engines and Web portals

with large hub sizes.

Foraging in Information Patches

Although multiple Web sites were visited by all par-

ticipants on both tasks, it is apparent that they tended

not to �it from one Web site to another. There were

more transitions within a Web site than between sites.

The ratio of within-site to between-site transitions was

M … 2.1 for the Antz task and M … 5.2 for the City

task. Inspection of �gure 3.5 suggests that, as the in-

formation scent of encountered Web pages declines at

a site, there is a tendency for participants to leave the

site or return to some previously visited state. From the

Web protocols, I identi�ed segments where partici-

pants visited three or more pages at a Web site that was

not a search engine or Web portal. I found N … 3

three-page sequences and N … 6 �ve-page sequences

(no other sequences were found). The Web pages in

these sequences were divided into the �rst page visited

at the site, the last page visited at a site, and the pages

visited between the �rst and last page (middle pages).

Figure 3.6 presents the scent ratings (initial ratings; see

above) of the pages in these sequences. Each point in

�gure 3.6 is based on the geometric mean of scent

ratings of the visited pages produced by the indepen-

dent panel of raters discussed above. Also plotted in

�gure 3.6 is the average scent rating of all the Web

pages visited by our participants. Figure 3.6 shows that

initially the information scent at a site is high, and

when that information scent falls below the average

information scent, users switch to another site or

search engine.

There also appears to be a relation between the

amount of information scent �rst encountered at a

Web site and the length of the sequence (the run)

of page visits at the Web site. I identi�ed N … 68 se-

quences of pages visits (one or more) at Web sites and

split these runs two ways: (a) run length �3 versus run

length � 2, and (b) start page information scent �
median rating versus start page information scent <

median. This median split analysis showed that starting

with a high information scent was strongly associated

with longer runs at a Web site, w2
(1) … 8.69, p < .005.

General Discussion

This chapter provides an initial foray into under-

standing the behavioral ecology of information forag-

ing on the Web. Signi�cant Web tasks are driven by

goals, often set in the context of broader sense-making

tasks. Consequently, it is possible to frame the analysis

of the task environment and foraging behavior using

constructs from the study of human problem solving.

Web foraging can be viewed as search in problem

spaces. The concept of information scent (proximal

cues used to judge the utility of links) emerged as a

principal component of the heuristics that drive the

problem space search process. Improvements in in-

formation scent are related to more ef�cient Web

foraging, and the detection of diminishing informa-

tion scent is involved in decisions to leave a Web lo-

cality. In chapter 4, I present a more detailed rational

analysis of the concept of information scent and its

relation to foraging ef�ciency, and a detailed com-

putational model that incorporates information scent

into simulations of detailed moment-by-moment

problem-solving behavior of Web foragers.

Information on the Web exhibits a patchy struc-

ture along several dimensions. The link structure tends

to be organized into clusters (generally correlated
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�gure 3.6 Information scent of sequences of pages
visited at Web sites prior to going to another Web
site. Each data point represents the geometric mean
of ratings from ten judges. Pages were rates on a 4-
point scale of Not relevant (0), Low Relevant (1),
Medium Relevant (2), and Highly Relevant (3).
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with Web sites). URLs are named in ways that re�ect

hierarchical patches. Content tends to be organized

into topical localities such that link distances corre-

late with semantic differences. Search engines dynam-

ically create information patches of links relevant to

some query. The patchiness of the Web environment

invites analogies to the conventional patch model

presented in chapter 2. Figure 3.6 suggests that users

choose to leave an information patch when the in-

formation scent (a proximal indicator of utility) of

encountered Web pages at a site drops below the

average information scent of encountered pages. This

phenomenon is analogous to the observation that

food foragers will tend to leave a patch when the

instantaneous rate of gain drops below the rate of

gain for the environment. Chapter 4 derives an in-

formation patch model based on a patch model of

food foraging.

APPENDIX: SUMMARY OF THE

SIGNIFICANCE QUESTION CODING

CATEGORIES AND WEB PROTOCOL

CODING GUIDE

Summary of the Signi�cance Question
Coding Categories

Respondents to the Signi�cance Question each pro-

vided a detailed account of a signi�cant task they had

recently performed on the Web. Samples of the re-

sponses to the Signi�cance Question survey were

coded along three dimensions: (a) The purpose or

goal of the task performed, (b) the method by which it

had been done, and (c) the content or topic relevant

to the task. A summary of the coding scheme and il-

lustrations are presented in tables 3.A.1�3.A.3.

Summary of the Web Protocol
Coding Guide

A Web Protocol Coding Guide was developed

to provide coding rules and examples to guide

the coding of protocols obtained from participants in

Web studies. A summary of these rules is provided

below.

Hierarchical Goal Structures

The coding scheme assumes that Web foraging be-

havior is the result of activity in problem spaces or-

ganized around a hierarchical goal structure (Newell,

1990). Each problem space is organized around

some goal and a set of state-changing operators.

Achieving each subgoal involves the application of

operators, such as typing in URLs, clicking on links,

and so forth. Goals are assumed to arise through

speci�c cognitive plans that decompose a supergoal

into subgoals, impasses that require solution, or en-

vironmental triggers.

table 3.A.1 Survey coding categories and examples for the Purpose taxonomy

� Find: Use of the Web to download information, �nd a fact, �nd a document, and �nd out about a product
* Download information. Example: ��For work, I needed to download a utility for unpacking �les, and

had to search through a couple of download sites in order to �nd it.��
* Get a fact. Example: ��I needed to �nd out when HANSON was coming out with their new album

for my daughter. We went into their website and got the answer. We did this tonight.��
* Get a document. Example: ��Reference the Java 1.2 API docs�I�m a Java programmer��
* Find out about a product. Example: ��Searching for a music CD that was not available in Australia,

then purchasing it.��
� Compare/choose: Use of the Web to evaluate multiple products or pieces of information in order to help

the respondent make a decision. Example: ��After searching numerous magazines and catalogs for pricing and feature
information on the Zip and Zip Plus drives, I was able to determine that an original
Zip would be a better decision, and even that the Zip Plus didn�t support daisy-chaining. Furthermore,
I found that I could get a Zip drive for $30 less if I bought a refurbished unit.��

� Understand: Use of the Web to help the respondent understand some topic. Category generally includes locating a fact or
document prior to sense making. Example: ��Last year, did a search on transient
ischemic attacks (minor strokes) when my father suffered one to learn about their effects.��

� Uncodable: (1) Unclear which category the answer ful�lls or (2) unable to visualize the situation based
on the given description. Example: ��Almost daily I �nd what I consider to be important info. My mind sometimes feels
like it is going to explode with the overload.��
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table 3.A.2 Survey coding categories and examples for the Method taxonomy

� Explore: General searching to �nd what is out there. The search is not triggered by a particular goal. Example: ��Stumbled
across a Taoist site, got interested, and a bit confused whether or not I already am a Taoist.��

� Monitor: Sit-and-wait foraging. The search is not triggered by a particular goal; it is a routine behavior. Example:
��Discovered a Macintosh news portal www.macsurfer.com. Check it each day to follow the links.��

� Find: Searching for a particular fact/document/piece of information. Search is triggered by a particular
goal. Example: ��Trying to �nd a speci�c type royalty free photo. Logged on to PhotoDisc, did a search, found the right
photo, ordered and downloaded it all online.��

� Collect: Searching for multiple pieces of information. Searcher is open to any answer, not looking for a particular one. A
goal drives the searcher�s behavior. Example: ��I used WWW search engines to search
for sources of technical training. My organization required training on a unique set of skills and I
searched for companies that might offer training on those skills. I was able to use the information I
found to justify the purchase of training from one of the companies.��

� Uncodable: (1) Unclear which category the answer ful�lls or (2) unable to visualize the situation based
on the given description. Examples: (1) ��Found an updated driver for a printer that would not work correctly. Was able to
get printer working within an hour of being presented with the problem.�� (2) ��As a medical information broker I utilize
Web resources on a daily basis to provide information to clients about speci�c health concerns.��

table 3.A.3 Survey coding categories and examples for the Content taxonomy

� Business. Example: ��I used WWW search engines to search for sources of technical training. My organization required
training on a unique set of skills and I searched for companies that might offer training
on those skills. I was able to use the information I found to justify the purchase of training from one of
the companies.��

� Education. Example: ��Found information about obscure Austrian psychiatrist Otto Weininger for wife�s thesis research.��

� Finance. Example: ��I was looking for a home equity loan. I got information about the different routes to
take and made several connections with people in that business. I ended up getting a loan with my own bank.��

� Job Search. Example: ��Job searching, checking out a prospective employer�s Web site to gather background info. Also to
research relocation info on a speci�c area.��

� Medical. Example: ��Looked up information on a medication to �nd out the side effects.��

� Miscellaneous. Codable, but responses do not �t in any other category�Example: ��To do my bible studies
I always use materials from the World Study Bible (http://ccel.wheaton.edu/wwsb/) and information
provided there helps me greatly.��

� News. Example: ��Used it to become familiar with the ��Clinton�� scandal!��

� People. Trying to �nd [information about] a person or persons. Example: ��I found a distant cousin I
did not know existed while doing genealogy research. He had his own Web page.��

� Product information and purchase
* Computer products. Example: ��Information on computer motherboards and chipsets (and suppliers

of same) led to reconsidering the use of socket-7 based equipment.��
* Vehicles. Example: ��Went to Edmund�s Web page to learn vehicle dealer�s costs. Compared to Carmax Web page used

vehicle prices to estimate depreciation of new vehicle.��
* Download. Example: ��Found a freeware utility that I can use on one of my servers.��
* Other Products. Example: ��Searching for information on digital cameras to make a purchase/not purchase decision.��

� Travel. Example: ��Used the Web to �nd travel and hotel accommodations, saving myself lots of money
and time. . . .��

� Uncodable. Example: ��I use the net to �rst identify, then hone, most of my purchase decisions.��
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Hierarchical Information Structure

The coding assumed that information is arranged into

hierarchical patches. The criteria for distinguishing

different kinds of information patches include whe-

ther participants have names for the different patches

(indicating a conceptual distinction) or whether the

patches afford different actions (an environmental

distinction). The coding speci�ed the following patch

types:

� Web. The entire Web. At various points, partic-
ipants speci�ed that the scope of their foraging
was the entire Web (e.g., when executing a
search on a large search engine portal).

� Web site. A Web site often has a producer (or
author), content that is about some topics, and
one or more purposes that can be achieved by
users (e.g., purchases), and it has a URL. Some
speci�c subclasses are portal sites and search-
engine sites.

� Search collection. In contrast to Web sites, which
are relatively static collections that may be
fetched by their URL, a search collection is
generated by a query string submitted to a search
engine that indexes some collection of content.
Like Web sites, search collections are about
some topically related content.

� Page. A page can be thought of as containing link
descriptors (or links), content (textual or image
based), content elements, and other elements.
Pages may also contain some additional patchy
structure, such sidebars and other groupings, or
regions. Because pages are the universal struc-
ture for accessing content on the Web, they have
a wide variety of subtypes, including home pages
and product pages.

� Subpage. Within pages, there are often distinct
visual regions. A subpage is a set of links and/or
content grouped together on the page.

� Content element. This is the content that is the
end point of the foraging. The consumption of
content provides the reward for foraging. In
theory, we assume that the smallest elements
are equivalent to propositions (by de�nition, the
smallest elements of meaning that can be as-
signed a truth value). In practice, these are small
collections of English words and phrases that
could be used by a cognitive operator (e.g., in
judging the relevance or utility of a link).

� Link descriptors (links). These give information
about another page (URL). Content links lead

to pages that contain content, and category
links lead to pages containing other links (index
pages).

� Option. An option is something that may be
speci�ed by the user. These are usually selected
via a menu of some sort, a radio button, etc.

Information Needs and Representations

Users represent and reformulate the speci�cation of

information that they are seeking. The coding dis-

tinguished among the following information needs

and representations:

� Question (task). Initially, participants were pres-
ented with an external question, aspects of which
they would come to internalize and reformulate.

� Need. This is an internal goal that characterizes
the needed content. Certain aspects of the need-
ed content are ��highlighted�� or elaborated�the
expectation being that these are the concepts
that will be used to drive foraging behavior,
judge the relevance of items encountered, for-
mulate query strings, and so on.

� Query. The actual words (external representa-
tion) typed in or selected to be a query to a
search engine.

� URL. Often, participants specify their informa-
tion need by formulating (guessing) a URL
string that they believe may return the desired
content.

Information needs may be operated on by reading,

noting, formulating, and reformulating actions that

create, elaborate, or modify their speci�cation.

Information Navigation and Search

Most of the participants� Web behavior involved

some form of Web navigation or search. The coding

guide speci�ed the following actions that constitute

the bulk of protocols:

� Go-to hinformation-structure-typei hspeci�c-
structurei, where hinformation-structure-typei is
some type of information patch structure dis-
cussed above (e.g., a Web site) and hspeci�c-
structurei indicates the particular information
patch (e.g., a speci�c URL such as www.altavista
.com); the goal or operator involved in going to
some information patch.

ECOLOGY OF WEB FORAGING 65

www.altavista.com
www.altavista.com


� Searchhstructure-typei hspeci�c-structurei hspeci�c-
queryi, where hstructure-typei is some type of in-
formation patch structure, hspeci�c-structurei is
the speci�c information patch being searched,
and hspeci�c-queryi is the string of words used in
search; the goal or operator involved in using a
search engine.

� Follow hlinki, where hlinki is a link descriptor;
the goal or operator involved in moving from one
page to another via a link.

� Go-forward-in-history, go-back-in-history, goals
and operators for moving through the browser
history list.

� Refresh, refreshing the page using the browser
button.

Evaluations

Participants often evaluated the utility or relevance of

Web links, pages, and sites. Evaluations of speci�c

information structures were coded as High (the par-

ticipant indicated that the information seemed useful

or promising), Low (the participant indicated that the

information was somewhat related to a goal), None

(the participant indicated that the information was

unrelated to the goal), and Null (the participant did

not state the evaluation).

Notes

1. This was one of the heuristics that I consciously
used to learn about foraging theory.

2. I thank Lada Adamic and Jim Pitkow for provid-
ing me with these data, and Alexa for initially supplying
PARC with the data sets.

3. Manning and Schuetze (1999) show a mapping
between the normalized correlation and a Bayesian anal-
ysis of the log-likelihood odds of a document being rel-
evant given a set of word cues representing the interest of
a user.

4. Davison used two additional measures that yiel-
ded similar results.

5. See Gigerenzer (2000) for a discussion of psy-
chology�s focus on method and inferential statistics that
aims to generalize �ndings to populations of participants,
but psychology�s underdevelopment of complementary
methodology and statistical machinery for generalizing
�ndings to conditions of the world.

6. Further details of the GVU Survey methodology
can be found on the Web (GVU�s 10th WWW user
survey [n.d.].)

7. The detailed Web Protocol Coding Guide is
available on request.

8. Other problem spaces are evident the protocols,
for instance, for navigating through the history list,
but are much rarer than the ones discussed here. Other
problem spaces could easily be added to the analysis.
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4

Rational Analyses of Information

Scent and Web Foraging

The notion of information scent has been introduced

in a general way in chapters 1�3. Information scent

refers to the detection and use of cues, such as World

Wide Web (Web) links or bibliographic citations,

that provide users with concise information about

content that is not immediately available. Informa-

tion scent plays an important role in guiding users to

the information they seek, and it also plays a role in

providing users with an overall sense of the contents

of collections. The purpose of this chapter is to pro-

vide a rational analysis of Web foraging in which

information scent plays a central role.

The concept of information scent has proven to be

productive. The SNIF-ACT model of Web foraging

described in chapter 5 is driven by an information

scent mechanism. In chapter 6, the ACT-IF model

of people seeking information in the Scatter/Gather

document-clustering browsers uses the same infor-

mation scent mechanism. More generally, the con-

cept has been useful in understanding user behav-

ior with highly interactive information visualizations

(Pirolli, Card, & Van Der Wege, 2003). In chapter 9,

I review how the concept of information scent has

in�uenced design principles and engineering models

in human-information interaction. The focus of this

chapter is on the underlying rational choice model of

information scent. This analysis leads to a Random

Utility Model (McFadden, 1974) of navigation choice

by users that can be implemented as a spreading ac-

tivation mechanism (Anderson & Lebiere, 1998; An-

derson & Pirolli, 1984). The analysis also leads to a

kind of information patch model (chapter 2) that

concerns the decision of when to leave a current

information patch. Finally, the information patch

model, which concerns individual decisions about

foraging, can be related to a model of the aggregate

behavior of Web foragers called the Law of Sur�ng

(Huberman, Pirolli, Pitkow, & Lukose, 1998) that

characterizes the distribution of foraging path lengths

taken at a Web site. The Law of Sur�ng is a way of

characterizing how long people stay at a Web site, or

what is sometimes called Web site ��stickiness.��
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The Environmental Model

Throughout the foraging literature, it is assumed that

organisms base their foraging decisions on predic-

tions about the typology and utility of habitat and the

typology and utility of food items (e.g., species of prey

or plants). There is considerable evidence that hu-

mans show preference for landscape features (aesthet-

ics) that appear to predict high-resource-providing

environments (e.g., a savanna), as well as features

associated with ease of exploration (Orians & Heer-

wagen, 1992).1 Studies in ethnobiology and cross-

cultural psychology indicate considerable coherence

in the biological categories that have evolved in dif-

ferent cultures and a high correspondence of folk

categories to scienti�c categories of species (Malt,

1995). Entities that are more useful within a culture

have much more elaborated categorical structure

than do those that are peripherally useful. Humans,

like many other organisms, apparently learn to cate-

gorize their habitats and biological entities within

those habitats, and these categorizations are shaped

by utilization. Information Foraging Theory assumes

that the information forager also bases decisions on

assessments of information habitats and information

items and that these assessments are based on learned

categorizations and utility judgments. An adapta-

tionist perspective expects evolution to favor cogni-

tive processes that result in categories and judgment

processes that re�ect the structure of the environment

relevant to more adaptive behavior.

In addition to the regularities noted in chapter 3,

another regularity is the availability of labeled navi-

gation links from one Web page to another (e.g.,

�gure 4.1), and users appear to prefer following links

over other means of Web navigation (Katz & Byrne,

2003). Web page designs have evolved to associate

(by human design or automated information systems)

small snippets of text and graphics with such links.

Those text and graphics cues are intended to repres-

ent tersely the content that will be encountered by

choosing a particular link on one page and navigat-

ing to the linked page. When browsing the Web

by following links, users must use these cues pre-

sented proximally on the Web pages they are cur-

rently viewing in order to make navigation decisions.

These link cues are called information scent. For the

Web user, there is uncertainty about the relationship

of the proximal cues to the linked information re-

sources.

The rational analysis of information scent draws

on four theories: (1) an extension of Egon Brunswik�s

(1956) ecological Lens Model that characterizes the

judgment problems facing organisms in probabilis-

tically textured environments, (2) Anderson�s (1990,

1991) adaptationist theory of categorization that de-

scribes how organisms predict unobserved attributes

from observed ones, (3) Anderson�s (Anderson, 1990;

Anderson& Milson, 1989) adaptationist theory of mem-

ory that describes how needed information is retrieved

in the context of presented information, and (4) a very

general and rational theory of choice, based on the

Random Utility Model (McFadden, 1974, 1978). The

general argument is that information foragers operate in

an ecologically rational manner to make choices based

on their predictive judgments (under uncertainty)

based on information scent.

Examples of Information Scent

Before delving into the analysis, it is worth examining

some examples of information scent. Pirolli (1997,

p. 3) introduced the notion of information scent as

��terse representations of content . . . whose trail leads

to information of interest.�� Figure 4.1 presents some

examples of information scent cues. Figure 4.1a is a

typical page generated by a Web search engine in

response to a user query. The page lists Web pages

(search results) that are predicted to be relevant to the

query. Each search result is represented by its title (in

blue), phrases from the hit containing words from

the query, and a URL (Uniform Resource Locator).

Figure 4.1b illustrates an alternative form of search

result representation (for exactly the same items in

�gure 4.1a) that is provided by relevance-enhanced

thumbnails (Woodruff, Rosenholtz, Morrison, Faulr-

ing, & Pirolli, 2002), which combine thumbnail im-

ages of search results with highlighted text relevant to

the user�s query. Figure 4.1c is a hyperbolic tree

browser2 (Lamping & Rao, 1994; Lamping, Rao, &

Pirolli, 1995). Each label on each node in the hyper-

bolic tree is the title for a Web page. Finally, �gure

4.1d presents the Microsoft Explorer browser with a

typical �le system view. Each label on a node repres-

ents a folder, �le, or application.

User interface research is often aimed at investi-

gating the ef�cacy of alternative forms of information

scent cues in aiding navigation. For instance, Wood-

ruff et al. (2002) compared standard presentations of

search results (�gure 4.1a) with relevance enhanced
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thumbnails (“gure 4.1b), and Pirolli et al. (2003)
tested the hyperbolic tree (“gure 4.1c) against Mi-
crosoft Explorer (“gure 4.1d). A general “nding is
that the superiority of one kind of cue over another is
not universal; it depends on the information goal of
the user. Another general “nding is that for naviga-
tion tasks over complex networks of information, very
small perturbations in the accuracy of information
scent can cause qualitative shifts in the cost of brows-

ing. Consequently, designing user interfaces to have
••good•• information scent can yield qualitative im-
provements in usability (chapter 9).

Analogy to Scent in Food Foraging

An analogy between humans following trails of in-
formation scent to desirable information and animals
following trails of scent to desirable items is shown

“gure 4.1 Examples of proximal information scent cues: (a) search results from a popular search
engine, (b) relevance-enhanced thumbnails of the same search results, (c) Star Tree (or hyperbolic tree)
presentation of a hierarchy, and (d) Microsoft Explorer presentation of a hierarchy. See color insert.
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